

LibreOffice as JavaScript idiomatic
WebWidget + Library

Moritz Duge <moritz.duge@allotropia.de>
allotropia software GmbH

2024-11-08, SFSCON, Bolzano

mailto:moritz.duge@allotropia.de

Office Suites as platform
● used for Line of Business Applications

– like Order Administration & Warehouse software
– or document generation & inhouse mapping of processes

● why an Office Suite?
– tons of powerful features (form letter templating, charts for data

presentation, ...)
– macros & external APIs
– spreadsheets with formulas, filtering, dynamic formatting, …

● Office Suites are low-code platforms!

Office Suites in the web

● problem: migration to Web-based solutions
– “Cloud Office” suites aren’t either meant for customization or

force hard vendor infrastructure dependencies upon workflows
– costly adaption of code to JS libraries / APIs

● solution:
– native LO in the browser’s Javascript engine!

From LOWA to native JS
● 2021: prototype running LibreOffice via WASM

– a.k.a “LOWA”
– API: interaction only through low-level Embind code

● 2024 – ZetaJS:
– providing a native Javascript API for easy

programmability

From LOWA to native JS

advantages:
● ZetaJS: provides an idiomatic JS library for LibreOffice
● just a static webserver is needed
● LibreOffice runs fully client side
● we got the size down to 32 MB binary and 15 MB data

– ongoing work…
– using the browser cache

From LOWA to native JS

Digression: “advanced Javascript”
● normal JS runs in a “main thread”
● parallelization through “web workers”

– process-like isolation
– loophole: SharedArrayBuffer
– but can’t access “document” object inside workers
– message passing through “port” object (not shown here)

Demo

See the video ...

LOWA to native JS
web worker: get UNO entry points

css = zetajs.uno.com.sun.star;

context = zetajs.getUnoComponentContext();

desktop = css.frame.Desktop.create(context);

LOWA to native JS

web worker: store file

doc.storeToURL("file:///tmp/output",
 [new css.beans.PropertyValue({
 Name: "FilterName",
 Value: "writer_pdf_Export"
})]);

LOWA to native JS
main "thread"

const bytes = FS.readFile("/tmp/output");
const blob = new Blob(
 [bytes], {type: "application/pdf");

const link = document.createElement("a");
link.href = URL.createObjectURL(blob);
link.download = "letter.pdf";
link.style = "display:none";
document.body.appendChild(link);
link.click();

Different applications

Different applications
See zetaoffice.net for
● precompiled LOWA binaries
● more examples

– convert files
– register JavaScript to LibreOffice events
– find and replace text and document elements
– run fully fledged LibreOffice UI in the browser
– small introduction examples
– ...

https://zetaoffice.net/

Cutting the Edge
underlying technology is still fairly new
● WASM (Web Assembly):

– intermediate “bytecode”
● like Java JVM stack machine, Android DEX, CIL (.NET), Python *.pyc, …

– much more performant then plain Javascript
– good compilation from other languages

● Emscripten compiles C++ to WASM
● Web Workers enable concurrence in the web browser

Cutting the Edge
● CPU bugs: Spectre + Meltdown

– WTF!? Browsers & CPU bugs???
– LibreOffice needs SharedArrayBuffers

-> foreign origin must agree (CORS)
– see LibreOffice Conference 2024 talk

● WASM: since 2017, Safari is the new Internet Explorer
● Emscripten: since 2012 (asm.js based before WASM)

– made several Emscripten upstream patches

Outlook / Future Plans

● improve integration with Vue.js, Angular, …
● add type information for TypeScript
● strip down WASM binary size
● optimized production and debug builds

Subscribe at: zetaoffice.net/#contact

Thank you! Any questions?

https://zetaoffice.net/#contact

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16

