
Can Test Driven Development
be speeded up with Generative AI?

SFSCon 2024
November 8th, 2024

Who are we?

2

Moritz Mock Jorge Melegati Barbara
Russo

(Generative) Large Language Models

• Generative models are types of Machine Learning models (ML)
that are designed to produce new data samples that resemble a
given dataset
oFor instance, they can predict the next token based on previous tokens,

one token at a time

• Example: GPT-4o

Some limitations

• Lack of explainability

• Hallucinations: output that sound plausible but is not true

Explainability

• Explainability: allows human users to comprehend and trust the
results and output created by machine learning algorithms

• State-of-the-art ML-models tend to be highly complex and black-
box
• GPT-3 has 175 billion parameters!
• Impossible for humans to reason on these numbers!

Hallucinations

AI hallucinates software packages and devs download them –
even if potentially poisoned with malware

• ChatGPT recommends the use of a software library, package, or
framework that doesn’t exist

• An attacker can upload a malicious package with the same name
to the registries and wait for people to download the packages

https://www.theregister.com/2024/03/28/ai_bots_hallucinate_software_packages/

AI in software development

• Programming languages are a form of language

• A reasonable use for Generative AI

• How can we tackle the issues mentioned earlier?
• Test Driven Development can be useful
• Guaranteeing the existence of tests for the generated code

Test Driven Development

• Writing failing test case

• Minimal code to fulfil the test case

• Refactoring the code

8

Problem statement

Can generative AI be used to automate TDD?

9

Prompt engineering

• Two interaction patterns
• Collaborative pattern, one agent
• Fully-automated pattern, two agents

• Created dedicated prompts
• Used ChatGPT’s API
• For each interaction a new agent was considered

10

Integration of AI in TDD
Collaborative pattern

11

Integration of AI in TDD
Fully automated pattern

12

Specify prompt
for the test

creation

Experiment setup

• Non-automated TDD vs. Collaborative pattern
• Experiment in Python
• Conducted online (Google Colab)
• 40 minutes to complete the exercise
• Employed the gpt-3.5-turbo model

13

Results of the experiment

14

Results of the experiment

15

Fully automated:
fast and accurate

but no tests for
edge cases.

Results of the experiment

16

Collaborative
pattern: less

interactions but
increased number
and size of tests.

Conclusion

• For our experimental settings, generative AI can be used to
automate TDD

• With the abstraction of the human in the TDD process the level of
creativity may get worse

• The AI needs expert supervision
• A junior developer might be misled by the AI-generated solution

17

Thank you!

	Slide 1: Can Test Driven Development be speeded up with Generative AI?
	Slide 2: Who are we?
	Slide 3: (Generative) Large Language Models
	Slide 4: Some limitations
	Slide 5: Explainability
	Slide 6: Hallucinations
	Slide 7: AI in software development
	Slide 8: Test Driven Development
	Slide 9: Problem statement
	Slide 10: Prompt engineering
	Slide 11: Integration of AI in TDD Collaborative pattern
	Slide 12: Integration of AI in TDD Fully automated pattern
	Slide 13: Experiment setup
	Slide 14: Results of the experiment
	Slide 15: Results of the experiment
	Slide 16: Results of the experiment
	Slide 17: Conclusion
	Slide 18

