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Who are we?
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(Generative) Large Language Models

• Generative models are types of Machine Learning models (ML) 
that are designed to produce new data samples that resemble a 
given dataset
oFor instance, they can predict the next token based on previous tokens, 

one token at a time

• Example: GPT-4o



Some limitations 

• Lack of explainability

• Hallucinations: output that sound plausible but is not true



Explainability

• Explainability: allows human users to comprehend and trust the 
results and output created by machine learning algorithms

• State-of-the-art ML-models tend to be highly complex and black-
box
• GPT-3 has 175 billion parameters!
• Impossible for humans to reason on these numbers!



Hallucinations

AI hallucinates software packages and devs download them – 
even if potentially poisoned with malware

• ChatGPT recommends the use of a software library, package, or 
framework that doesn’t exist

• An attacker can upload a malicious package with the same name 
to the registries and wait for people to download the packages

https://www.theregister.com/2024/03/28/ai_bots_hallucinate_software_packages/



AI in software development

• Programming languages are a form of language

• A reasonable use for Generative AI

• How can we tackle the issues mentioned earlier?
• Test Driven Development can be useful
• Guaranteeing the existence of tests for the generated code



Test Driven Development

• Writing failing test case 

• Minimal code to fulfil the test case

• Refactoring the code
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Problem statement

Can generative AI be used to automate TDD? 
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Prompt engineering

• Two interaction patterns 
• Collaborative pattern, one agent
• Fully-automated pattern, two agents

• Created dedicated prompts
• Used ChatGPT’s API
• For each interaction a new agent was considered
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Integration of AI in TDD
Collaborative pattern
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Integration of AI in TDD
Fully automated pattern
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Specify prompt 
for the test 

creation



Experiment setup

• Non-automated TDD vs. Collaborative pattern
• Experiment in Python
• Conducted online (Google Colab)
• 40 minutes to complete the exercise
• Employed the gpt-3.5-turbo model
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Results of the experiment
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Results of the experiment
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Fully automated: 
fast and accurate 

but no tests for 
edge cases.



Results of the experiment
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Collaborative 
pattern: less 

interactions but 
increased number 
and size of tests.



Conclusion

• For our experimental settings, generative AI can be used to 
automate TDD

• With the abstraction of the human in the TDD process the level of 
creativity may get worse

• The AI needs expert supervision
• A junior developer might be misled by the AI-generated solution
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Thank you!
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