
Optimizing Cloud Compute Resources
with Spare Cores

Gergely Daróczi
Spare Cores Team

Slides: sparecores.com/talks
2

https://sparecores.com/talks

>>> from sparecores import why

3 . 1

>>> from sparecores import why

Data Science / Machine Learning batch jobs:

3 . 1

>>> from sparecores import why

Data Science / Machine Learning batch jobs:

run SQL

3 . 1

>>> from sparecores import why

Data Science / Machine Learning batch jobs:

run SQL

run R or Python script

3 . 1

>>> from sparecores import why

Data Science / Machine Learning batch jobs:

run SQL

run R or Python script

train a simple model, reporting, API integrations etc.

3 . 1

>>> from sparecores import why

Data Science / Machine Learning batch jobs:

run SQL

run R or Python script

train a simple model, reporting, API integrations etc.

train hierarchical models/GBMs/neural nets etc.

3 . 1

>>> from sparecores import why

Data Science / Machine Learning batch jobs:

run SQL

run R or Python script

train a simple model, reporting, API integrations etc.

train hierarchical models/GBMs/neural nets etc.

Scaling (DS) infrastructure.

3 . 2

>>> from sparecores import why

3 . 3

>>> from sparecores import why

3 . 4

>>> from sparecores import why

3 . 5

>>> from sparecores import why

AWS ECS

3 . 5

>>> from sparecores import why

AWS ECS

AWS Batch

3 . 5

>>> from sparecores import why

AWS ECS

AWS Batch
Kubernetes

3 . 5

>>> from sparecores import why

Source: xkcd
3 . 6

https://xkcd.com/2740/

>>> from sparecores import why

3 . 7

>>> from sparecores import why

3 . 8

>>> from sparecores import why

3 . 9

>>> from sparecores import why

Other use-cases:

stats/ML/AI model training,

ETL pipelines,

traditional CI/CD workflows for compiling and testing software,

building Docker images,

rendering images and videos,

etc.

3 . 10

>>> from sparecores import why

3 . 11

>>> from sparecores import intro

Open-source tools, database schemas and documentation to inspect and
inventory cloud vendors and their compute resource offerings.

4 . 1

>>> from sparecores import intro

Open-source tools, database schemas and documentation to inspect and
inventory cloud vendors and their compute resource offerings.

Managed infrastructure, databases, APIs, SDKs, and web applications to
make these data sources publicly accessible.

4 . 1

>>> from sparecores import intro

Open-source tools, database schemas and documentation to inspect and
inventory cloud vendors and their compute resource offerings.

Managed infrastructure, databases, APIs, SDKs, and web applications to
make these data sources publicly accessible.

Helpers to start and manage instances in your own environment.

4 . 1

>>> from sparecores import intro

Open-source tools, database schemas and documentation to inspect and
inventory cloud vendors and their compute resource offerings.

Managed infrastructure, databases, APIs, SDKs, and web applications to
make these data sources publicly accessible.

Helpers to start and manage instances in your own environment.

SaaS to run containers in a managed environment without direct vendor
engagement.

4 . 1

>>> from sparecores import intro

Source: sparecores.com
4 . 2

https://sparecores.com/

>>> from sparecores import intro

4 . 3

>>> from sparecores import intro

4 . 4

>>> from sparecores import intro

4 . 5

>>> from sparecores import intro

4 . 6

>>> from sparecores import intro

4 . 7

>>> from sparecores import intro

4 . 8

>>> from sparecores import intro

4 . 9

>>> from sparecores import intro

4 . 10

>>> from sparecores import intro
>>> from rich import print as pp
>>> from sc_crawler.tables import Server
>>> from sqlmodel import create_engine, Session, select
>>> engine = create_engine("sqlite:///sc-data-all.db")
>>> session = Session(engine)
>>> server = session.exec(select(Server).where(Server.server_id == 'g4dn.xlarge')).one()
>>> pp(server)
Server(
 server_id='g4dn.xlarge',
 vendor_id='aws',
 display_name='g4dn.xlarge',
 api_reference='g4dn.xlarge',
 name='g4dn.xlarge',
 family='g4dn',
 description='Graphics intensive [Instance store volumes] [Network and EBS optimized] Gen4 xlarge',

 status=<Status.ACTIVE: 'active'>,
 observed_at=datetime.datetime(2024, 6, 6, 10, 18, 4, 127254),

hypervisor='nitro',
4 . 11

>>> sparecores.__dir__()

5 . 1

>>> import sc_crawler

ETL framework with database schema and inventory method definitions

6 . 1

>>> import sc_crawler

ETL framework with database schema and inventory method definitions

Database migration tool supporting multiple database engines

6 . 1

>>> import sc_crawler

ETL framework with database schema and inventory method definitions

Database migration tool supporting multiple database engines

Manual list of vendors and metadata

6 . 1

>>> import sc_crawler

ETL framework with database schema and inventory method definitions

Database migration tool supporting multiple database engines

Manual list of vendors and metadata

Vendor API integrations to list regions, zones, servers, storages, prices,
included free traffic and IPv4 addresses etc.

6 . 1

>>> import sc_crawler

ETL framework with database schema and inventory method definitions

Database migration tool supporting multiple database engines

Manual list of vendors and metadata

Vendor API integrations to list regions, zones, servers, storages, prices,
included free traffic and IPv4 addresses etc.

Spare Cores Inspector integration for hardware discovery and benchmark
scores

6 . 1

>>> import sc_crawler

ETL framework with database schema and inventory method definitions

Database migration tool supporting multiple database engines

Manual list of vendors and metadata

Vendor API integrations to list regions, zones, servers, storages, prices,
included free traffic and IPv4 addresses etc.

Spare Cores Inspector integration for hardware discovery and benchmark
scores

Dependency for other Spare Cores components (schemas)

6 . 1

>>> import sc_crawler

6 . 2

>>> from sc_crawler import fks

Source: dbdocs.io/spare-cores
6 . 3

https://dbdocs.io/spare-cores/sc-crawler

>>> from sc_crawler import scd

Need to optionally track price etc. changes.

6 . 4

>>> from sc_crawler import scd

Need to optionally track price etc. changes.

class Scd(ScModel):
 """Override the `observed_at` column to be primary key in SCD tables."""

 observed_at: datetime = Field(
 primary_key=True,
 default_factory=datetime.utcnow,
 sa_column_kwargs={"onupdate": datetime.utcnow},
 description="Timestamp of the last observation.",
)

6 . 4

>>> from sc_crawler import alembic

Let’s update the cpu_cores column to be optional, as some vendors as
shy sharing that over their APIs. We will backfill with the Spare Cores
Inspector!

6 . 5

>>> from sc_crawler import alembic

Let’s update the cpu_cores column to be optional, as some vendors as
shy sharing that over their APIs. We will backfill with the Spare Cores
Inspector!

"""v0.1.1 cores optional

Revision ID: 4691089690c2
Revises: 98894dffd37c
Create Date: 2024-04-10 00:59:03.509522

"""

from typing import Sequence, Union

import sqlalchemy as sa
import sqlmodel
from alembic import op

6 . 5

>>> from sc_crawler import alembic
$ sc-crawler schemas upgrade --sql

6 . 6

>>> from sc_crawler import alembic
$ sc-crawler schemas upgrade --sql

CREATE TABLE _alembic_tmp_server (
 vendor_id VARCHAR NOT NULL,
 server_id VARCHAR NOT NULL,
 name VARCHAR NOT NULL,
 vcpus INTEGER NOT NULL,
 hypervisor VARCHAR,
 cpu_allocation VARCHAR(9) NOT NULL,
 cpu_cores INTEGER,
 cpu_speed FLOAT,
 cpu_architecture VARCHAR(10) NOT NULL,
 cpu_manufacturer VARCHAR,
 cpu_family VARCHAR,
 cpu_model VARCHAR,
 cpus JSON NOT NULL,
 memory INTEGER NOT NULL,
 gpu_count INTEGER NOT NULL,
 gpu_memory_min INTEGER,

t t l INTEGER
6 . 6

>>> from sc_crawler import hwinfo
Varying quality and availability of data at different vendors.

6 . 7

>>> from sc_crawler import hwinfo
Varying quality and availability of data at different vendors.

6 . 7

>>> from sc_crawler import hwinfo
Varying quality and availability of data at different vendors.

6 . 8

>>> from sc_crawler import hwinfo
Varying quality and availability of data at different vendors.

6 . 9

>>> from sc_crawler import hwinfo
Varying quality and availability of data at different vendors.

No SSD info via the API. Parse from server description! 🙀

6 . 9

>>> from sc_crawler import hwinfo
Varying quality and availability of data at different vendors.

No SSD info via the API. Parse from server description! 🙀

No CPU info via the API. Extracting from homepage! 😿

6 . 9

>>> from sc_crawler import hwinfo
Varying quality and availability of data at different vendors.

No SSD info via the API. Parse from server description! 🙀

No CPU info via the API. Extracting from homepage! 😿

No hypervisor info via the API. Manual mappings! 🙀😿

6 . 9

>>> from sc_crawler import hwinfo
Varying quality and availability of data at different vendors.

No SSD info via the API. Parse from server description! 🙀

No CPU info via the API. Extracting from homepage! 😿

No hypervisor info via the API. Manual mappings! 🙀😿

Region, right?

6 . 9

>>> from sc_crawler import hwinfo
Varying quality and availability of data at different vendors.

No SSD info via the API. Parse from server description! 🙀

No CPU info via the API. Extracting from homepage! 😿

No hypervisor info via the API. Manual mappings! 🙀😿

Region, right?

ID, eg eu-west-1

6 . 9

>>> from sc_crawler import hwinfo
Varying quality and availability of data at different vendors.

No SSD info via the API. Parse from server description! 🙀

No CPU info via the API. Extracting from homepage! 😿

No hypervisor info via the API. Manual mappings! 🙀😿

Region, right?

ID, eg eu-west-1

Name, eg Europe (Ireland)

6 . 9

>>> from sc_crawler import hwinfo
Varying quality and availability of data at different vendors.

No SSD info via the API. Parse from server description! 🙀

No CPU info via the API. Extracting from homepage! 😿

No hypervisor info via the API. Manual mappings! 🙀😿

Region, right?

ID, eg eu-west-1

Name, eg Europe (Ireland)

Alias, eg EU (Ireland)
6 . 9

>>> from sc_crawler import hwinfo
Varying quality and availability of data at different vendors.

No SSD info via the API. Parse from server description! 🙀

No CPU info via the API. Extracting from homepage! 😿

No hypervisor info via the API. Manual mappings! 🙀😿

Region, right?

ID, eg eu-west-1

Name, eg Europe (Ireland)

Alias, eg EU (Ireland)

API reference, eg eu-west-1

6 . 9

>>> from sc_crawler import hwinfo
Varying quality and availability of data at different vendors.

No SSD info via the API. Parse from server description! 🙀

No CPU info via the API. Extracting from homepage! 😿

No hypervisor info via the API. Manual mappings! 🙀😿

Region, right?

ID, eg eu-west-1

Name, eg Europe (Ireland)

Alias, eg EU (Ireland)

API reference, eg eu-west-1

Display name, eg Dublin (IE)

6 . 9

>>> from sc_crawler import hwinfo
Varying quality and availability of data at different vendors.

No SSD info via the API. Parse from server description! 🙀

No CPU info via the API. Extracting from homepage! 😿

No hypervisor info via the API. Manual mappings! 🙀😿

Region, right?

ID, eg eu-west-1

Name, eg Europe (Ireland)

Alias, eg EU (Ireland)

API reference, eg eu-west-1

Display name, eg Dublin (IE)

Exact location? Energy source?
6 . 9

>>> from sc_crawler import pricing

No way to find SKUs by filtering in the API call. Get all, search locally.

6 . 10

>>> from sc_crawler import pricing

No way to find SKUs by filtering in the API call. Get all, search locally.

f1-micro is one out of 2 instances with simple pricing.

For other instances, lookup SKUs for CPU + RAM and do the math.

6 . 10

>>> from sc_crawler import pricing

No way to find SKUs by filtering in the API call. Get all, search locally.

f1-micro is one out of 2 instances with simple pricing.

For other instances, lookup SKUs for CPU + RAM and do the math.

Match instance family with SKU via search in description, e.g. C2D .

6 . 10

>>> from sc_crawler import pricing

No way to find SKUs by filtering in the API call. Get all, search locally.

f1-micro is one out of 2 instances with simple pricing.

For other instances, lookup SKUs for CPU + RAM and do the math.

Match instance family with SKU via search in description, e.g. C2D .

Except for c2 , which is called “Compute optimized”.

6 . 10

>>> from sc_crawler import pricing

No way to find SKUs by filtering in the API call. Get all, search locally.

f1-micro is one out of 2 instances with simple pricing.

For other instances, lookup SKUs for CPU + RAM and do the math.

Match instance family with SKU via search in description, e.g. C2D .

Except for c2 , which is called “Compute optimized”.

And m2 is actually priced at a premium on the top of m1 .

6 . 10

>>> from sc_crawler import pricing

No way to find SKUs by filtering in the API call. Get all, search locally.

f1-micro is one out of 2 instances with simple pricing.

For other instances, lookup SKUs for CPU + RAM and do the math.

Match instance family with SKU via search in description, e.g. C2D .

Except for c2 , which is called “Compute optimized”.

And m2 is actually priced at a premium on the top of m1 .

The n1 resource group is not CPU/RAM, but N1Standard , extract if it’s
CPU or RAM price from description.

6 . 10

>>> import sc_crawler

Source: dbhub.io/sparecores
6 . 11

https://dbhub.io/sparecores/sc-data-priceless.db

>>> import sc_data

7 . 1

>>> import sc_data
GitHub Action set up to run the Crawler every 5 minutes.

7 . 1

>>> import sc_data
GitHub Action set up to run the Crawler every 5 minutes.

~30,000 GHA runs

7 . 1

>>> import sc_data
GitHub Action set up to run the Crawler every 5 minutes.

~30,000 GHA runs ~900 releases (with non-price changes)

7 . 1

>>> import sc_data
GitHub Action set up to run the Crawler every 5 minutes.

~30,000 GHA runs ~900 releases (with non-price changes)

Make the data available in a public (CC BY-SA) SQLite database:

7 . 1

>>> import sc_data
GitHub Action set up to run the Crawler every 5 minutes.

~30,000 GHA runs ~900 releases (with non-price changes)

Make the data available in a public (CC BY-SA) SQLite database:

350 MiB SQLite

7 . 1

>>> import sc_data
GitHub Action set up to run the Crawler every 5 minutes.

~30,000 GHA runs ~900 releases (with non-price changes)

Make the data available in a public (CC BY-SA) SQLite database:

350 MiB SQLite

2,000+ active servers and their ~275k prices tracked

7 . 1

>>> import sc_data
GitHub Action set up to run the Crawler every 5 minutes.

~30,000 GHA runs ~900 releases (with non-price changes)

Make the data available in a public (CC BY-SA) SQLite database:

350 MiB SQLite

2,000+ active servers and their ~275k prices tracked

800k+ measured scores across 24 benchmarks

7 . 1

>>> import sc_data
GitHub Action set up to run the Crawler every 5 minutes.

~30,000 GHA runs ~900 releases (with non-price changes)

Make the data available in a public (CC BY-SA) SQLite database:

350 MiB SQLite

2,000+ active servers and their ~275k prices tracked

800k+ measured scores across 24 benchmarks

Thin Python package to keep the data updated from S3.

7 . 1

>>> import sc_data
GitHub Action set up to run the Crawler every 5 minutes.

~30,000 GHA runs ~900 releases (with non-price changes)

Make the data available in a public (CC BY-SA) SQLite database:

350 MiB SQLite

2,000+ active servers and their ~275k prices tracked

800k+ measured scores across 24 benchmarks

Thin Python package to keep the data updated from S3.

Package version is tied to Crawler version.
7 . 1

>>> import sc_inspector

Information collected from vendor APIs is very limited, so we run:

8 . 1

>>> import sc_inspector

Information collected from vendor APIs is very limited, so we run:

Hardware inspection tools:

8 . 1

>>> import sc_inspector

Information collected from vendor APIs is very limited, so we run:

Hardware inspection tools:

dmidecode

8 . 1

>>> import sc_inspector

Information collected from vendor APIs is very limited, so we run:

Hardware inspection tools:

dmidecode

lscpu

8 . 1

>>> import sc_inspector

Information collected from vendor APIs is very limited, so we run:

Hardware inspection tools:

dmidecode

lscpu

lshw

8 . 1

>>> import sc_inspector

Information collected from vendor APIs is very limited, so we run:

Hardware inspection tools:

dmidecode

lscpu

lshw

nvidia-smi

8 . 1

>>> import sc_inspector

Information collected from vendor APIs is very limited, so we run:

Hardware inspection tools:

dmidecode

lscpu

lshw

nvidia-smi

Benchmarking workloads:

8 . 1

>>> import sc_inspector

Information collected from vendor APIs is very limited, so we run:

Hardware inspection tools:

dmidecode

lscpu

lshw

nvidia-smi

Benchmarking workloads:

bw_mem

8 . 1

>>> import sc_inspector

Information collected from vendor APIs is very limited, so we run:

Hardware inspection tools:

dmidecode

lscpu

lshw

nvidia-smi

Benchmarking workloads:

bw_mem

Compression algos

8 . 1

>>> import sc_inspector

Information collected from vendor APIs is very limited, so we run:

Hardware inspection tools:

dmidecode

lscpu

lshw

nvidia-smi

Benchmarking workloads:

bw_mem

Compression algos

OpenSSL hash functions and block
ciphers

8 . 1

>>> import sc_inspector

Information collected from vendor APIs is very limited, so we run:

Hardware inspection tools:

dmidecode

lscpu

lshw

nvidia-smi

Benchmarking workloads:

bw_mem

Compression algos

OpenSSL hash functions and block
ciphers

Geekbench 6

8 . 1

>>> import sc_inspector

Information collected from vendor APIs is very limited, so we run:

Hardware inspection tools:

dmidecode

lscpu

lshw

nvidia-smi

Benchmarking workloads:

bw_mem

Compression algos

OpenSSL hash functions and block
ciphers

Geekbench 6

stress-ng
8 . 1

>>> import sc_inspector
Data is collected in public: sc-inspector-data repo on GitHub.

8 . 2

>>> import sc_inspector

8 . 3

>>> import sc_inspector
docker run --rm -ti -v /var/run/docker.sock:/var/run/docker.sock \
 -e GITHUB_TOKEN=${GITHUB_TOKEN} \
 -e BENCHMARK_SECRETS_PASSPHRASE=${BENCHMARK_SECRETS_PASSPHRASE} \
 ghcr.io/sparecores/sc-inspector:main \
 inspect --vendor ${VENDOR} --instance ${INSTANCE} --gpu-count ${GPU_COUNT}

8 . 4

>>> import sc_inspector
docker run --rm -ti -v /var/run/docker.sock:/var/run/docker.sock \
 -e GITHUB_TOKEN=${GITHUB_TOKEN} \
 -e BENCHMARK_SECRETS_PASSPHRASE=${BENCHMARK_SECRETS_PASSPHRASE} \
 ghcr.io/sparecores/sc-inspector:main \
 inspect --vendor ${VENDOR} --instance ${INSTANCE} --gpu-count ${GPU_COUNT}

8 . 4

>>> import sc_runner
$ docker run --rm -ti \
 ghcr.io/sparecores/sc-runner:main \
 create aws --instance t4g.nano

Updating (aws.us-west-2.None.t4g.nano):

 pulumi:pulumi:Stack runner-aws.us-west-2.None.t4g.nano running
 + pulumi:providers:aws us-west-2 creating (0s)
@ updating....
 + pulumi:providers:aws us-west-2 created (0.29s)
 + aws:ec2:SecurityGroup t4g.nano creating (0s)
@ updating.....
 + aws:ec2:SecurityGroup t4g.nano created (2s)
@ updating....
 + aws:vpc:SecurityGroupIngressRule t4g.nano-0 creating (0s)
 + aws:vpc:SecurityGroupIngressRule t4g.nano-1 creating (0s)
 + aws:ec2:Instance t4g.nano creating (0s)
 + aws:vpc:SecurityGroupEgressRule t4g.nano-1 creating (0s)
 + aws:vpc:SecurityGroupEgressRule t4g.nano-0 creating (0s)
@ updating....

9 . 1

>>> import sc_runner

9 . 2

>>> import sc_runner

9 . 3

>>> import sc_keeper
$ curl https://keeper.sparecores.net/server/aws/g4dn.xlarge | jq
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 111k 100 111k 0 0 79795 0 0:00:01 0:00:01 --:--:-- 79799

{
 "vendor_id": "aws",
 "server_id": "g4dn.xlarge",
 "name": "g4dn.xlarge",
 "api_reference": "g4dn.xlarge",
 "display_name": "g4dn.xlarge",
 "description": "Graphics intensive [Instance store volumes] [Network and EBS optimized] Gen4 xlarge",
 "family": "g4dn",
 "vcpus": 4,
 "hypervisor": "nitro",
 "cpu_allocation": "Dedicated",
 "cpu_cores": 2,
 "cpu_speed": 3.5,
 "cpu_architecture": "x86_64",

" f t " "I t l"
10 . 1

>>> import sc_keeper

10 . 2

>>> import sc_keeper

10 . 3

import { AppModule } from ‘sc-www’;

11 . 1

import { AppModule } from ‘sc-www’;

Source: sparecores.com
11 . 2

https://sparecores.com/

>>> import __future__

12

>>> import __future__
Add support for more vendors

12

>>> import __future__
Add support for more vendors

Crawler (vendor API integration)

12

>>> import __future__
Add support for more vendors

Crawler (vendor API integration)

Runner (pulumi)

12

>>> import __future__
Add support for more vendors

Crawler (vendor API integration)

Runner (pulumi)

More SDKs (PyPI, npm, CRAN, etc.)

12

>>> import __future__
Add support for more vendors

Crawler (vendor API integration)

Runner (pulumi)

More SDKs (PyPI, npm, CRAN, etc.)

More benchmarks (e.g. LLM inference speed)

12

>>> import __future__
Add support for more vendors

Crawler (vendor API integration)

Runner (pulumi)

More SDKs (PyPI, npm, CRAN, etc.)

More benchmarks (e.g. LLM inference speed)

Data analysis, blog posts

12

>>> import __future__
Add support for more vendors

Crawler (vendor API integration)

Runner (pulumi)

More SDKs (PyPI, npm, CRAN, etc.)

More benchmarks (e.g. LLM inference speed)

Data analysis, blog posts

My Spare Cores (dashboard)

12

>>> import __future__
Add support for more vendors

Crawler (vendor API integration)

Runner (pulumi)

More SDKs (PyPI, npm, CRAN, etc.)

More benchmarks (e.g. LLM inference speed)

Data analysis, blog posts

My Spare Cores (dashboard)

SaaS 👀
12

>>> from sparecores import team

@bra-fsn @palabola @daroczig

13 . 1

>>> from sparecores import team

@bra-fsn

Infrastructure and
Python veteran.

@palabola

Guardian of the front-
end and Node.js tools.

@daroczig

Hack of all trades,
master of NaN .

13 . 2

>>> from sparecores import support

13 . 3

14 . 1

14 . 2

14 . 3

