ATTAULLAH BURIRO

CONTEXT

Existing Approaches

CLAPMETRICS

DATASET

FEATURE EXTRACTIO

CLASSIFICATION PROTOCOL

CONCLUSIONS

CLAPMETRICS: DECODING USERS' GENDER AND AGE THROUGH SMARTWATCH GESTURE DYNAMICS

Attaullah Buriro

Faculty of Engineering, Free University of Bolzano-Bozen, Bolzano, Italy attaullah.buriro@unibz.it

SFSCON'24, NoiTech Park, Bolzano, Italy 08/11/2024

PRESENTATION OVERVIEW

CLAPMETRICS

ATTAULLAH BURIRO

Context

Existing Approaches

CLAPMETRICS

DATASET

FEATURE EXTRACTION

CLASSIFICATION PROTOCOL

CONCLUSIONS

1 Motivation and Problem Statement

2 Existing Methods and Their Limitations

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><10</td>

- 6 ClapMetrics
- 4 Conclusions

ATTAULLAH BURIRO

CONTEXT

Existing Approaches

CLAPMETRICS

- Dimin
- P-----
- EXTRACTIO
- CLASSIFICATION PROTOCOL
- CONCLUSIONS

Why Age and Gender Estimation?

CLAPMETRICS

ATTAULLAH BURIRO

CONTEXT

Existing Approaches

CLAPMETRICS

APPROACE

DAIASEI

FEATURE EXTRACTIO

CLASSIFICATION PROTOCOL

PERSONALIZED USER EXPERIENCES

 Streaming Services: Platforms like Netflix could recommend age and gender-specific content, such as animated films for younger users or true crime series for adults.

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ ♀(や 4/17

STREAMING SERVICES

CLAPMETRICS

ATTAULLAH BURIRO

CONTEXT

Existing Approaches

CLAPMETRICS

DATASET

FEATURE EXTRACTIO

CLASSIFICATION PROTOCOL

PERSONALIZED USER EXPERIENCES

- Streaming Services: Platforms like Netflix could recommend age and gender-specific content, such as animated films for younger users or true crime series for adults.
- Health and Fitness Apps: Exercise recommendations in apps like MyFitnessPal or Strava could adjust based on age—strength training for younger users and flexibility exercises for older ones.

CLAPMETRICS

ATTAULLAH BURIRO

CONTEXT

Existing Approaches

CLAPMETRICS

- APPROAC
- FEATURE
- CLASSIFICATION PROTOCOL
- CONCLUSIONS

PERSONALIZED USER EXPERIENCES

- Streaming Services: Platforms like Netflix could recommend age and gender-specific content, such as animated films for younger users or true crime series for adults.
- Health and Fitness Apps: Exercise recommendations in apps like MyFitnessPal or Strava could adjust based on age—strength training for younger users and flexibility exercises for older ones.
- News Apps: News aggregators like Flipboard could suggest content relevant to different demographics, like career advice for younger users and financial planning for older users.

CLAPMETRICS

ATTAULLAH BURIRO

CONTEXT

Existing Approaches

CLAPMETRICS

APPROACH

DATASET

FEATURE EXTRACTIO

CLASSIFICATION PROTOCOL

INCREASED SECURITY AND AUTHENTICATION

 Banking Security: Age and gender estimation can provide an additional verification layer in mobile banking apps, such as confirming identity for secure logins and preventing fraud.

BANKING SECURITY

CLAPMETRICS

ATTAULLAH BURIRO

CONTEXT

Existing Approaches

CLAPMETRICS

DATASET

FEATURE EXTRACTIO

CLASSIFICATION PROTOCOL CONCLUSIONS

INCREASED SECURITY AND AUTHENTICATION

- Banking Security: Age and gender estimation can provide an additional verification layer in mobile banking apps, such as confirming identity for secure logins and preventing fraud.
- Workplace Authentication: Offices and secure facilities can use age and gender data to add a behavioral biometric layer to traditional security protocols, enhancing employee verification.

BANKING SECURITY

CLAPMETRICS

ATTAULLAH BURIRO

CONTEXT

Existing Approaches

CLAPMETRICS

- DATASET
- FEATURE EXTRACTIO
- CLASSIFICATION PROTOCOL

INCREASED SECURITY AND AUTHENTICATION

- Banking Security: Age and gender estimation can provide an additional verification layer in mobile banking apps, such as confirming identity for secure logins and preventing fraud.
- Workplace Authentication: Offices and secure facilities can use age and gender data to add a behavioral biometric layer to traditional security protocols, enhancing employee verification.
- Healthcare Access Control: Hospitals and healthcare systems could integrate age and gender checks in wearables to protect patient data and control access to sensitive areas.

BANKING SECURITY

HEALTHCARE ACCESS CONTROL

EXISTING TECHNIQUES AND THEIR LIMITATIONS

CLAPMETRICS

ATTAULLAH BURIRO

CONTEXT

EXISTING APPROACHES

CLAPMETRICS

- APPROAC
- DATASET
- FEATURE EXTRACTION
- CLASSIFICATION PROTOCOL
- CONCLUSIONS

FACIAL FEATURES

- Strengths: High accuracy in controlled environments; widely applicable in consumer and security applications.
- Limitations: Sensitive to lighting and angle; privacy concerns; accuracy may degrade with aging. It is an Intrusive way!

Virmani, Deepali, Tanu Sharma, and Muskan Garg. "GAPER: gender, age, pose and emotion recognition using deep neural networks." Advances in Electromechanical Technologies: Select Proceedings of TEMT 2019. Springer Singapore, 2020. 287-297.

6/17

EXISTING TECHNIQUES AND THEIR LIMITATIONS

CLAPMETRICS

ATTAULLAH BURIRO

CONTEXT

EXISTING APPROACHES

CLAPMETRICS

DITIGT

FEATURE

CLASSIFICATION PROTOCOL

CONCLUSIONS

FINGERPRINT ANALYSIS

- Strengths: Accurate and consistent with unique fingerprint patterns; works well in secure environments.
- Limitations:Requires physical contact, which may raise hygiene concerns; age estimation is limited. It is an Intrusive way!

Spanier, Assaf B., et al. "Enhancing Fingerprint Forensics: A Comprehensive Study of Gender Classification Based on Advanced Data-Centric Al Approaches and Multi-Database Analysis." Applied Sciences 14.1 (2024): 417.

VOICE ANALYSIS

- Strengths: Non-intrusive and works with audio data alone; useful in hands-free applications.
- Limitations: Accuracy affected by background noise, vocal health, and language dependency.

Foggia, Pasquale, et al. "Identity, Gender, Age, and Emotion Recognition from Speaker Voice with Multi-task Deep Networks for Cognitive Robotics." Cognitive Computation (2024): 1-11.

<ロト < @ ト < E ト < E ト E の < で 7/17

ATTAULLAH BURIRO

CONTEXT

EXISTING APPROACHE

CLAPMETRICS

DATASET

FEATURE EXTRACTIO

CLASSIFICATIO? PROTOCOL

CLAPMETRICS: Decoding Users' Gender and Age Through Smartwatch Gesture **Dynamics**

INTRODUCTION

CLAPMETRICS

ATTAULLAH BURIRO

CONTEXT

EXISTING APPROACHES

CLAPMETRICS

- DATASET
- FEATURE EXTRACTION
- CLASSIFICATION PROTOCOL
- CONCLUSIONS

We propose the exploitation of arm's micro-movements generated during the course of clapping action to estimate age and gender of

wearer/clapper.

- **Strengths**: Completely un-intrusive, accurate, user-friendly, does not require any additional physical contact,
- Limitations: Might be too difficult in some scenarios (although, a faint clap would be ok).

・ロト・日本・モート・モート モージッペー 10/17

DATA COLLECTION SUBJECTS • 20 participants ATTAULLAH Females BURIRO students and researchers • 3 body posture Sitting, Standing, and Walking 70% • Signup Males 100-sec data in each of the (a) Gender posture In total, 3000s of data (Used in Above 40 Below 30 this paper) 10% 30% Sign-in 100-sec data in any of the posture 60% In total, 2000s of data Between 30 and 40 (b) Age

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

FEATURE EXTRACTION

SENSOR DATA

CLAPMETRICS

ATTAULLAH BURIRO

CONTEXT

EXISTING APPROACHES

CLAPMETRICS

Approach

DATASET

FEATURE EXTRACTION

CLASSIFICATION PROTOCOL CONCLUSIONS

• Sensors are 3-dimensional: 4D data from accelerometer and gyroscope

 $m = \sqrt{sensor[x]^2 + sensor[y]^2 + sensor[z]^2}$ (1)

STATISTICAL FEATURES

- 41 statistical features from each sensor
 - Min (4+4), Max (4+4), Mode (4+4), Median (4+4), Mean (4+4), Variance (4+4), Skewness (4+4), Kurtosis (4+4), Correlation (3+3), Abs (3+3), Cosine similarity (3+3)

CLASSIFIER SELECTION AND OPTIMIZATION

CLAPMETRICS

ATTAULLAH BURIRO

CONTEXT

Existing Approaches

CLAPMETRICS

DUTIETT

FEATURE EXTRACTION

CLASSIFICATION PROTOCOL CONCLUSIONS

CLASSIFIERS

- **BN**: Probabilistic graphical models representing variables and their conditional dependencies.
- KNN: Non-parametric method known for simplicity and effectiveness in classification.
- RF: Ensemble learning method constructing multiple decision trees for accurate and stable predictions.
- DNN: Advanced machine learning classifier, particularly with Convolutional Neural Networks (CNNs).

PARAMETER OPTIMIZATION

Classifier	Parameters	Range of Parameters	Best Hyperparameter	Best Validation Accuracy (%)
KNN	# of neighbors	1 to 50 (increment=5)	1	(Age: 99.38) (Gender: 96.31)
RF	# of estimators	100 to 1000 (increment=100)	200	(Age: 98.20), (Gender: 96.13)
	num_layers	2 to 10 (increment=1)	3	
DNN	num_units	32 to 512 (increment=32)	288, 512, 384	(Age: 96.93) (Gender: 95.70)
	learning_rate	0.01, 0.001, 0.0001	0.001	

CLASSIFICATION TASKS AND DATA PARTITIONING

CLAPMETRICS

ATTAULLAH BURIRO

CONTEXT

EXISTING APPROACHES

CLAPMETRICS

DATAGET

FEATURE EXTRACTION

CLASSIFICATION PROTOCOL

CONCLUSIONS

GENDER ESTIMATION

- Formulated as a binary classification task: male or female.
- Simplifies the model's decision-making process for focused gender estimation.

AGE ESTIMATION

- Treated as a three-class classification problem to capture distinct age groups.
- Tailors classifiers to recognize and differentiate between specific age ranges.

DATA PARTITIONING

- Dataset split into training (50%) and test (50%) sets for balanced learning and validation.
- Training set further divided: 66% for training, 34% for validation.

PARAMETER OPTIMIZATION

- Conducted exclusively on the training set to fine-tune hyperparameters.
- Optimized parameters applied to classifiers, trained on the full training set,

RESULTS

DATASET

Feature Extractio

CLASSIFICATIO PROTOCOL

CONCLUSIONS

DEEPCLAP: CONCLUSIONS & WAY FORWARD

CLAPMETRICS

ATTAULLAH BURIRO

Context

EXISTING APPROACHES

CLAPMETRICS

- DATASET
- FEATURE EXTRACTION
- CLASSIFICATION PROTOCOL
- CONCLUSIONS

CONCLUSIONS

- We propose a user-friendly, un-intrusive, accurate and DNN-powered age and gender estimation using smartwatch
- DNN achieves 98.77% and 99.44% accuracies for gender of age estimation from clapping movements

WAY FORWARD

- Final proof-of-the-concept implementation
- Performance Analysis (computation, memory, testing time)
- Security analysis (random, mimic, etc)
- Usability analysis (SUS, etc.)

ATTAULLAH BURIRO

CONTEXT

EXISTING APPROACHE

CLAPMETRICS

DATASET

FEATURE EXTRACTIO

CLASSIFICATIO PROTOCOL

CONCLUSIONS

Thanks! Questions?