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Dementia and Alzheimer’s Disease

• Mental disorders are one of the five most costly conditions for 

medical spending.

• Dementia is the most expensive condition for medical and social cost 

and, still, it receives only a fraction of the research funds w.r.t. other 

health conditions.

• Alzheimer’s Disease (AD): 60-80% of dementia cases

▪  Several national and international campaigns aimed at raising 

awareness and attention (e.g., www.worldalzmonth.org)

▪ Currently 40+ million people suffer from AD: 130-150 million by 2050, 

one of the most significant global social economic health crises.

▪ The exact cause of AD is unknown.

▪ Importance of early and accurate diagnosis: quality of life can be 

significantly improved.
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Alzheimer’s Disease (AD)
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Data Workflow
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Pre-processing
• A single MRI scan file typically takes 30-40 MB.

• After pre-processing the files generated for a single image take 350-500 MB.

• Pre-procesing of a single image takes ~8h ➔ several months or even years

• A data parallel approach used to speed up computation ➔ a few months

Brain MRIs from 

3170 subjects

a never 

ending effort
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Data Workflow
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Machine Learning tasks
• Outlier Detection

• Feature selection

• Training predictive models

• Regression for age estimation

• Classification: binary and multiclass predictive models

• Testing the models: robust performance estimation

• Explainability and Interpretability

Brain MRIs from 

3170 subjects

Various ML tasks
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KNIME for
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▪ KNIME is an open-source Data Science and Machine 

Learning Platform

▪ codeless Machine Learning and Data Science

▪ open-source and free (General Public License)

▪ open and extendible platform

a KNIME data workflow 

(an acyclic graph of computations)
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Various Approaches since 2014

Binary (HC vs AD) and multiclass classification problems

• Input features:

– No selection: all available (~400) numerical measurements from brain ROIs

– Domain-specific feature selection: 16 hippocampal subfields

– Automatic feature selection

• Filter/Wrapper/Embedded methods

• Classification methods I – focus on predictive accuracy:

1. Binary Region Classifier 

2. Probability Weight-based Classification 

3. Bayesian Classifier 

4. Support Vector Machine 

5. Deep Neural Networks 

• Classification methods II – predictive accuracy and descriptive power:

– brain age estimation
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Predictive Task: Regression

❑ Input data: structural MRI scans (T1 weighting) of human 

brains

– Healthy Control (HC) only or in combination with

– Alzheimer’s Disease (AD) (or a different condition)

❑ Regression task:

– Estimate the subject’s age from a structural MRI of the brain

• e.g., Brain Age Gap Estimation (BrainAGE)

– Challenges: data manipulation, accuracy, curse of dimensionality, 

confidence of models
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Brain Age Gap Estimation

• Brain Age Gap Estimation (BrainAGE)

– BrainAGE quantifies the difference between the actual anagraphic age 

of a subject and their age as predicted by ML models applied to 

neuroimaging data 

– It is considered a biomarker of brain health.

– Typical method: age model of healthy subjects

• Voxel-Based Morphometry (VBM) approach: PCA applied to 3,700 

voxels to reduce the dimensionality of the input space

• Relevance Vector Regression (RVR) and Support Vector 

Regression (SVR)
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The “Apparent” Brain Age

• The Apparent Brain Age (ABA) for a specific neurodegenerative condition

– goal-conditioned brain age estimation based on region-wise segmentation

– inductive bias based on feature selection in order to improve the classification 

accuracy of the estimated brain age

Objectives: simplest model with high accuracy, interpretability and specificity

✓ the design of a data workflow with a combination of only linear models to 

preserve the original input space semantics

✓ the definition of a novel feature score to measure the specific contribution of each 

selected morphological region to the classification prediction

✓ a rigorous and extensive experimental comparative analysis to validate the 

method: comparable or superior accuracy than SOTA ML methods

✓ demonstrate the interpretability of the classification method
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▪ A. Varzandian, M.A.S. Razo, M.R. Sanders, A. Atmakuru, G. Di Fatta, 

“Classification-biased apparent brain age for the prediction of Alzheimer's 

disease”, Frontiers in Neuroscience (581), 2021.
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ABA, Classification and Interpretability

1. Biased Forward Feature Selection (BFFS) as coarse-grained method: 

cross-validation on a correlation-based filter

2. Linear regression is applied to the selected features: LASSO regression 

with fine-grained feature selection method

3. Logistic regression based only on ABA and actual age

4. Interpretability with a measure of feature importance/score
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➔Feature Score:

where {fi} are the k ROI features, ai and cj are model parameters

with
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Feature Selection (step 1)
• results based on 1901 subjects (AD and CN)
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ABA Prediction and Classification (2 and 3)
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Classification Accuracy (3)
• results based on 1901 subjects (AD and CN)
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Feature Score (4): True Positive
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Feature Score (4): True Negative
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Conclusions

▪ With same pre-processing and features most classification methods are 

similar in terms of accuracy. However, black-box approaches do lack 

descriptive capabilities, especially in such high-dimensional spaces.

▪ A new candidate biomarker, the Apparent Brain Age, helps at improving 

predictive accuracy and can be useful on itself for its descriptive power.

▪ The new feature score helps to link age gaps to specific ROIs for a 

powerful combination of

➢ state-of-the-art accuracy

➢ interpretability

➢ specificity

➢ Ongoing effort is directed to experimental analysis of multiclass problems 

and specificity.

➢ Data from other neurodegenerative diseases to extend the work further.
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