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Outline unibz

 Motivations

« Dementia and Alzheimer’'s Disease (AD)

« MRI data-driven solutions for Alzheimer’s disease
classification

— Data and data processing
— Machine Learning models

« outliers detection, feature selection, regression and classification
— Explainability/Interpretability

« Conclusions
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Dementia and Alzheimer’s Disease unibz

* Mental disorders are one of the five most costly conditions for
medical spending.

« Dementia is the most expensive condition for medical and social cost
and, still, it receives only a fraction of the research funds w.r.t. other
health conditions.

* Alzheimer’'s Disease (AD): 60-80% of dementia cases
= Several national and international campaigns aimed at raising
awareness and attention (e.g., www.worldalzmonth.org)

= Currently 40+ million people suffer from AD: 130-150 million by 2050,
one of the most significant global social economic health crises.

= The exact cause of AD is unknown.

* |mportance of early and accurate diagnosis: quality of life can be
significantly improved.
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Data Workflow unibz
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Pre-processing
* Asingle MRI scan file typically takes 30-40 MB.
» After pre-processing the files generated for a single image take 350-500 MB.
» Pre-procesing of a single image takes ~8h = several months or even years
« A data parallel approach used to speed up computation = a few months
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Data Workflow unibz
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Machine Learning tasks
* Outlier Detection
Feature selection
Training predictive models

» Regression for age estimation

« Classification: binary and multiclass predictive models
Testing the models: robust performance estimation
Explainability and Interpretability
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Open for Innovation

KNIME

= KNIME is an open-source Data Science and Machine

Learning Platform
» codeless Machine Learning and Data Science

= open-source and free (General Public License)

= open and extendible platform
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Various Approaches since 2014 unibz

Binary (HC vs AD) and multiclass classification problems

* |Input features:
— No selection: all available (~400) numerical measurements from brain ROls
— Domain-specific feature selection: 16 hippocampal subfields
— Automatic feature selection
» Filter/Wrapper/Embedded methods

« Classification methods | — focus on predictive accuracy:
1. Binary Region Classifier

Probability Weight-based Classification

Bayesian Classifier

Support Vector Machine

Deep Neural Networks

Al A

« Classification methods |l — predictive accuracy and descriptive power:
— brain age estimation

Prof. Giuseppe Di Fatta



Predictive Task: Regression unibz

4 Input data: structural MRI scans (T1 weighting) of human
brains

— Healthy Control (HC) only or in combination with
— Alzheimer’s Disease (AD) (or a different condition)

] Regression task:
— Estimate the subject’s age from a structural MRI of the brain
* e.g., Brain Age Gap Estimation (BrainAGE)

— Challenges: data manipulation, accuracy, curse of dimensionality,
confidence of models
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Brain Age Gap Estimation unibz

« Brain Age Gap Estimation (BrainAGE)

— BrainAGE quantifies the difference between the actual anagraphic age
of a subject and their age as predicted by ML models applied to
neuroimaging data

— It is considered a biomarker of brain health.

— Typical method: age model of healthy subjects

* Voxel-Based Morphometry (VBM) approach: PCA applied to 3,700
voxels to reduce the dimensionality of the input space

* Relevance Vector Regression (RVR) and Support Vector
Regression (SVR)
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The "Apparent” Brain Age unibz

 The Apparent Brain Age (ABA) for a specific neurodegenerative condition
— goal-conditioned brain age estimation based on region-wise segmentation

— inductive bias based on feature selection in order to improve the classification
accuracy of the estimated brain age

Objectives: simplest model with high accuracy, interpretability and specificity

v the design of a data workflow with a combination of only linear models to
preserve the original input space semantics

v’ the definition of a novel feature score to measure the specific contribution of each
selected morphological region to the classification prediction

v' arigorous and extensive experimental comparative analysis to validate the
method: comparable or superior accuracy than SOTA ML methods

v' demonstrate the interpretability of the classification method

. A. Varzandian, M.A.S. Razo, M.R. Sanders, A. Atmakuru, G. Di Fatta,
“"Classification-biased apparent brain age for the prediction of Alzheimer's
disease”, Frontiers in Neuroscience (581), 2021.
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ABA, Classification and Interpretability =~ unibz

1.

Biased Forward Feature Selection (BFFS) as coarse-grained method:
cross-validation on a correlation-based filter

Linear regression is applied to the selected features: LASSO regression
with fine-grained feature selection method

Logistic regression based only on ABA and actual age

Interpretability with a measure of feature importance/score
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Feature Selection (step 1) unibz

« results based on 1901 subjects (AD and CN)

TABLE ROls selected over all folds of all cross-validation trials for both genders.

F&M F M
ROI LH&RH LH RH LH&RH LH RH LH&RH LH RH
Entorhinal_thickness 76% 97% 54% 70% 96% 44% 81% 98% 64%
Whole_hippocampus 55% 100% 9% 56% 100% 12% 53% 100% 6%
Middletemporal_thickness 52% 61% 43% 55% 34% 76% 49% 88% 10%
Subiculum 44% 39% 49% 50% 66% 34% 38% 12% 64%
CA1 35% 45% 24% 23% 32% 14% 46% 58% 34%
Molecular_layer_HP 34% 67% 1% 17% 34% 0% 51% 100% 2%
Amygdala 37% 16% 58% 22% 16% 28% 52% 16% 88%
Hippocampal_tail 25% 31% 19% 19% 20% 18% 31% 42% 20%
Presubiculum 25% 20% 30% 25% 12% 38% 25% 28% 22%
HATA 13% 9% 17% 20% 14% 26% 6% 4% 8%
GC_ML_DG 12% 16% 7% 4% 0% 8% 19% 32% 6%
Fusiform_thickness 11% 15% 7% 4% 4% 4% 18% 26% 10%
Bankssts_thickness 11% 17% 1% 18% 30% 6% 3% 4% 2%
Middletemporal_volume 11% 13% 8% 14% 18% 10% 7% 8% 6%
Inf_Lat_Vent 10% 13% 7% 0% 0% 0% 20% 26% 14%
Inferiortemporal_thickness 10% 8% 12% 9% 10% 8% 11% 6% 16%
CA3 9% 10% 8% 5% 4% 6% 13% 16% 10%
CA4 9% 6% 11% 10% 6% 14% 7% 6% 8%

Only features selected at least in 10% of the models either for the Left Hemisphere (LH) or the Right Hemisphere (RH) are included. ROls are listed in decreasing order of the total
frequency in all groups and both hemispheres. (Frequencies greater than or equal to 50% are in bold).

Prof. Giuseppe Di Fatta 13



ABA Prediction and Classification (2 and 3) 4nibz
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Method M6: Apparent Brain Age vs. chronological age for the female gender group. The plot on the left shows ABA vs. age; the plot on the right shows
the ADS vs. age for the same data and with the equivalent boundary line. The ABA values are generated as test set predictions from the folds of a single
cross-validation execution. The solid black line is the logistic regression decision boundary of the final model; the green lines are the boundaries in the individual folds
of cross-validation; the dashed line is included as reference. The black boundary line is indicative and is obtained from the single final model trained on all data.
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Classification Accuracy (3)

results based on 1901 subjects (AD and CN)

100 -

90 -

Accuracy (%)

~l
o
]

60 -

50 -

Baseline ABA & LogReqg
SVM SVM DN +BFFS
+data +data +data +data
~9076 92.46 G057 S 92.09
87.32
84 64
&
<P
@
2
N
B1 B2 B3 M4 M5 Me
Method ID

Female subjects

Prof. Giuseppe Di Fatta

Accuracy (%)

unibz

Baseline
SVM SVM DN

100 =

+data +data

ABA & LogReg

+BFFS
+data +data

P -86:68 520 gga - - - - - - - - A
s 84.32
o Sl
- C
&7
70 = 2
X0
60 -
50 =
B1 B2 B3 M4 M5 Me
Method ID

Male subjects

15




Feature Score (4): True Positive uniE
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Feature Score (4): True Negative uniE
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Conclusions unibz

= With same pre-processing and features most classification methods are
similar in terms of accuracy. However, black-box approaches do lack
descriptive capabilities, especially in such high-dimensional spaces.

= A new candidate biomarker, the Apparent Brain Age, helps at improving
predictive accuracy and can be useful on itself for its descriptive power.

» The new feature score helps to link age gaps to specific ROls for a
powerful combination of
> state-of-the-art accuracy
> interpretability
> specificity

» Ongoing effort is directed to experimental analysis of multiclass problems

and specificity.
» Data from other neurodegenerative diseases to extend the work further.
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