Pyccel
Write Python code, get Fortran speed

Emily Bourne (Scientific IT and Application Support, EPFL),
Yaman Glicli (Max Planck Institute for Plasma Physics, Garching)

SFSCON - 2023

=. Python : A Love-Hate Relationship

Beginner friendly
Easy/fast to use
Libraries
Portable

Large community

Slow
Memory intensive

Limited recursion

def ackermann(m : int, n : int) -> int:
if m == 0:
return n + 1
elif n ==
return ackermann(m - 1, 1)
else:
return ackermann(m - 1, ackermann(m, n - 1))

$ python3 -m timeit -s 'from ackermann import ackermann' ‘ackermann(3,6)'
50 loops, best of 5: 9.36 msec per loop

$ python3 -m timeit -s 'from ackermann import ackermann' ‘ackermann(3,7)'
Traceback (most recent call last):

RecursionError: maximum recursion depth exceeded in comparison

What is Pyccel?

Pyccel was born out of frustration when going from prototype (Python) code to production

(Fortran) scientific code.

Pyccel is a transpiler. It currently translates to Fortran or C.

Using the C-Python API, translations are exposed back to Python creating an accelerator.

Pyccel is therefore also a static compiler for Python 3, using Fortran or C as backend language.

https://github.com/pyccel/pyccel

Original author : Original co-author : Maintainer and admin :
Ahmed Ratnani Said Hadjout Yaman Gl

Director of the UM6P PhD student at the TUM Staff Scientist at the Max
Vanguard Center Munich Planck Institute for Plasma

Physics

Maintainer and main dev :
Emily Bourne
HPC Application Expert at
SCITAS, EPFL

i les e bl

Current and previous Junior
developers:

Students from 1337 New
Generation Coding School,
\Y[o]o]elele}

import numpy as np

def linearconv_1d(nx: int, dt: float, nt: int):

c =1.0

dx = 2 / (nx-1)

X = np.linspace(9, 2, nx)
u = np.ones(nx)

u[int(©.5/dx) : int(1/dx + 1)] = 2

cp = ¢ * dt / dx
un = np.zeros(nx)

for _ in range(nt):
un[:] = u[:]
for i in range(1, nx):
ufi] = un[i] - cp * (un[i] - un[i-1])

return x, u

if __name__ == '__main__':

X, U = linearconv_1d(2001, ©.06003, 3000)

Pyccel : The best of both worlds?

Solving a Linear Convection Equation with Finite Differences

$ python3.10 -m timeit -s 'from linearconv_1d_mod import linearconv_1id'

'X, u = linearconv_1d(2601, ©.0003, 30600)"
1 loop, best of 5: 1.47 sec per loop
$ pyccel linearconv_1d_mod.py

$ python3.10 -m timeit -s 'from linearconv_1d_mod import linearconv_1d'

'X, u = linearconv_1d(2601, 0.0003, 30600)"
200 loops, best of 5: 1.33 msec per loop

Maximum memory (as measured by massif):

x1105!

python3.10 linearconv_mod.py : 6.4 MB

Jlinearconv_mod

61 KB

Pyccel : The best of both worlds?

Solving a Linear Convection Equation with Finite Differences

Fortran translation

module linearconv_1d_mod
x = [((©_164 + linspace_index*Real((2_i64 - © i64), f64) / Real((nx &

use, intrinsic :: ISO_C_Binding, only : f64 => C_DOUBLE , i64 => & - 1 i64), f64)), linspace_index = 0_i64,nx - 1 _i64)]
C_INT64_T x(nx - 1_i64) = 2. f64
implicit none allocate(u(9:nx - 1 i64))
u=1. f64
contains u(Int(e. f64 / dx, i64):Int(1_i64 / dx + 1 164, i64) - 1_i64) = &
e e e e e 2_i64
subroutine linearconv_1d(nx, dt, nt, x, u) cp = c * dt / dx
implicit none allocate(un(@:nx - 1 _1i64))
real(f64), allocatable, intent(out) :: x(:) un = 0. _f64
real(f64), allocatable, intent(out) :: u(:) do Dummy_0000 = 0 164, nt - 1 _i64, 1 _i64
integer(i64), value :: nx un(:) = u(:)
real(fe64), value :: dt do i = ©_i64, nx - 1_i64, 1_i64
integer(i64), value :: nt u(i) = un(i) - cp * (un(i) - un(i - 1_i64))
real(fe4) :: c end do
real(fe4) :: dx end do
real(fe4) :: cp if (allocated(un)) then
real(f64), allocatable :: un(:) deallocate(un)
integer(i64) :: Dummy_0000 end if
integer(i64) :: i return
integer(i64) :: linspace_index
c =1._f64 end subroutine linearconv_1d

dx = 2. f64 / Real((nx - 1_i64), f64) L e e
allocate(x(9:nx - 1 _i64)) end module linearconv_1d_mod

=. First steps with Pyccel

Pyccel is available on Pypi: linearconv_mod.cpython-310-x86_64-linux-gnu.so
linearconv_mod.py
. . _ pyccel_/
pip install pyccel L— linearconv_mod.mod

—— linearconv_mod.f90

. . . —— linearconv_mod.f90.lock
The simplest way to run Pyccel is with the L linearconv_mod.o

. . —— linearconv_mod.o.lock
command line tool: —— linearconv_mod_wrapper.c
—— linearconv_mod_wrapper.c.lock
—— linearconv_mod_wrapper.o
—— linearconv_mod_wrapper.o.lock
—— bind_c_linearconv_mod.f90
. . —— bind_c_linearconv_mod.f90.lock
Multiple files are generated: L bind_c_linearconv_mod.mod
—— bind_c_linearconv_mod.o
—— bind_c_linearconv_mod.o.lock

pyccel linearconv_mod.py

Translated code

—— cwrapper/
Locks (for thread safety) L cwrapper.lock
. —— cwrapper_ndarrays/
Worappers (to act as a bridge between L ndarrays/

languages)
e Shared library (callable from Python)

Two main questions:

1. How muchcanlgain?

2. How much effort is required?

Is Pyccel the right tool for me?

Tool

Cython
PyPy
Numba

Pythran

Pyccel

Code must
be
translated

Easy to install
without sudo
privileges

Type
annotations
needed

Compatible
bottlenecks
need
isolating

Handles
multiple
folders

Yes
Yes

Yes

Only
sub-folders

Yes

Interface
with pure
Python
code

Interface
with low
level code

Gain

=. How much can | gain vs NumPy?

Pythran (g++)

Pythran (icx)

Numba

Pyccel (Fortran, gfortran)
Pyccel (C, gcc)

Pyccel (Fortran, ifort)

Pyccel (C, icc)

Using most recent versions of the codes on Pypi as of 7th November with Python 3.11

https://github.com/pyccel/pyccel-benchmarks

HENE How long does that take?
1

Pythran (g++)

Pythran (icx)

Numba

Pyccel (Fortran, gfortran)
Pyccel (C, gcc)

Pyccel (Fortran, ifort)
Pyccel (C, icc)

w,
]
=
=
=
)
2
L
a
E
o
&)

Using most recent versions of the codes on Pypi as of 7th November with Python 3.11

https://github.com/pyccel/pyccel-benchmarks

... Conclusions
HE
H

https://www.github.com/pyccel/pyccel

Python + Pyccel = speedy development and speedy execution (up to x1000)
Simple interface via type annotations
Human-readable code generated in Fortran or C
Has support for parallelisation paradigms (OpenMP, cupy available in a fork)
Open to Open Source contributors
Well-maintained docs
https://github.com/pyccel/pyccel/tree/devel/docs
e Discord server for community interactions
https://discord.gg/2QéhwijfFVb

e Used by other open-source projects:
Also o Struphy [&} Plasma Physics PDEs
presenting at o Psydac: a Python IGA library for large-scale simulations
SFSCON! Published in the Journal of Open Source Software ¥

https://joss.theoj.org/papers/10.21105/joss.04991

https://www.github.com/pyccel/pyccel
https://github.com/pyccel/pyccel/tree/devel/docs
https://discord.gg/2Q6hwjfFVb
https://joss.theoj.org/papers/10.21105/joss.04991

=. Type annotations

Supported types:

built-in data types: bool, int, float, complex

NumPy integer types: int8, int16, int32, int64
NumPy real types: float32, float64, double
NumPy complex types: complexé64, complex128

NumPy arrays of any of the above

def func(a :

def func(a :

def func(a :

def func(arr :

def func(arr :

def func(arr :

int):

‘int'):

'int16'):

"int[:,:]"):

‘int[:,:](order=C)"):

"int[:,:](order=F)"):

=. Function templating

The same function can be used with multiple
types thanks to the template decorator

Similar to the UnionType but allows for more
fine-grain control

from pyccel.decorators import template

@template(name="T', types=[int,float])
def f(a : 'T', b : 'T[:]", c: "T[:,:]"):
PES

from pyccel.decorators import template

@template(name="T"', types=[int,float])
@template(name="'Z"', types=[int,float])
def f(a : 'T', b : 'Z2"):

pass

from pyccel.decorators import template

@template(name="'T"', types=[int,float])
def f(a : 'T', b : 'T"):
pass

...me
HE
H

Limitations to be fixed soon:

e Classes (availablein 1 or 2 weeks)

e Non-HPC structures (lists/dicts/sets) - Watch this space (hopefully end of the year)
e Uniontypes

Permanent limitations

Type changes

Non-homogeneous lists

Exceptions (unless heavily requested)
Plotting etc

HER Supported Python Packages
1
L

Well supported:

e cmath
e math
e NumPy

Minimal support:

e product from itertools
e exitfromsys

Managing Open Source Contributions

Bots and tests are used to automate
repetitive tasks i

Tests are only run on request to reduce
ecological impact

pyccel-bot (| bot | commented 3 weeks ago

Hello! Welcome to Pyccel! Thank you very much for your contribution &.

Iam the GitHub bot. I will help guide you through the different stages necessary to validate a review in Pyccel. If you
haven't yet seen our developer docs make sure you check them out here. Amongst other things they describe the re
ss that we have just started. You can also get in touch with our other developers on our

pro el Discord Server.

To begin with I will give you a short checklist to make sure your pull request is complete. Please tick items off when you
have completed them or determined that they are not necessary for this pull request. If you want me to run any specific
tests to check out corner cases that you can't easily check on your computer, you can request this using the command
/bot run X . Use the command /bot show tests to see a full list of the tests I can run. Once you have finished preparing
your pull request and are ready to request reviews just take your PR out of draft, or let me know with the command /bot
mark as ready . I will then run the full suite of tests to check that everything is as neat as you think before asking other
contributors for reviews. Tests will not run automatically before this point to avoid wasting resources. You can get a full list
of commands that I understand using /bot commands .

Please begin by requesting your checklist using the command ' /bot checklist

(©)

B
N Managing Open Source Contributions

© pyccel-bot (bot) suggested changes 2 days ago View reviewed changes

pyccel-bot | bot | left a comment

There seems to be lines in this PR which aren't tested. Please take a look at my comments and add tests which cover the
new code.

—] R d 38 ful D A b | If this is modified code which cannot be easily tested in this PR please open an issue to request that this code be either
- (ESCEAREN R R, S2) Sbdersililin sl = Plele Colta o Aatin Bl removed or tested. Once you have done that please leave a message on the relevant conversation beginning with the line
/bot accept and referencing the issue.
Codacy Static Code Analysis — Your pull request is up to standards! Details
Similarly if the new code cannot be tested for some reason, please leave a comment beginning with the line (/bot accept
v = Coverage verification (coverage, 3.8) Successfulin 45s Required Details on the relevant conversation explaining why the code can't be tested.
v (d Pyccel best practices (pyccel_lint, 3.8) Successfulin 1m Details ©
+ =4 Python linting (pylint, 3.8) Successfulin 16s Details A ey
~ (v Spelling verification (spelling, 3.8) Successfulin 41s (Required) Details Comment on lines +587 to +592
587 + self._dtype = NativeGeneric()
+/ [e=4 Unit tests on Linux (linux, 3.8) Successfulin 22m Details 588 + self._precision = 0
589 + self._rank =0
~ [r=2 Unit tests on MacOSX (macosx, 3.11) Successful in 24m Required) Details i * oMo IS = D
—_ .) - 592 + return
+ [#=4 Unit tests on Windows (windows, 3.8) Successfulin 21m Details
s pyccel-bot bot 2 days ago o

This code isn't tested. Please can you take a look

(©}

Reply...

Resolve conversation

HER OpenMP Support
1
L

Pyccel contains support for OpenMP 5 pragmas (see docs for details).

OpenMP functions can be imported and accessed via Pyccel

def get_num_threads(n : int):
from pyccel.stdlib.internal.openmp import omp_set_num_threads,
omp_get_num_threads, omp_get_thread_num
omp_set_num_threads(n)
#$ omp parallel
print("hello from thread number:", omp_get_thread_num())
result = omp_get_num_threads()
#$ omp end parallel
return result

if __name__ == '__main__ ':
x = get_num_threads(4)
print(x)

def my_sum(A: 'float[:,:]', n : int):
s = 0.
#$ omp parallel for collapse(2) reduction(+:s)
for i in range(n):
for j in range(n):
s += A[1,]]
return s

Time to solution = 17s

=. OpenMP - Example

def my_sum(A: 'float[:,:]', n :
return sum(A)

Time to solution = 0.06s

int):

function my_sum(A, n) result(s)
implicit none

real(fe4) :: s

real(f64), intent(in) :: A(9:,0:)
integer(i64), value :: n
integer(i64) :: i

integer(i64) :: j

s = 0._f64
1$omp parallel do collapse(2) reduction(+:s)
do i = _i64, n - _ie4, _i64

do j = _i64, n - _i64, _i64

s =s + A(j, 1)

end do
end do
I$omp end parallel do
return

end function sum

Time to solution without OpenMP =0.12s
Time to solution with 2 OpenMP threads = 0.06s

