Optimizing Software Performance with IL{P}P:

A novel approach

Enrico Zanardo

Researcher @ BEEZ

Enrico Zanardo SFSCON 1/17



@ Context and Motivation
© Related work

© Example problem

@ Results

© Conclusion

Enrico Zanardo SFSCON 2/17



Context and Motivation

Optimizing Software Performance & Machine Learning Models
o Distributed Systems & Datasets [RQ1];
e Parallel computation power [RQ1];

e Explainable Al (ILPP) [RQ2];

Enrico Zanardo SFSCON 3/17



Context and Motivation

[RQ1]: Is it possible to efficiently train machine learning models in
a decentralized and distribute network without owning the entire
dataset?

@ Single-node machine learning model training is difficult;
@ The dataset determines the accuracy of machine learning models;

[RQ2]: Is it possible to turn a machine learning model human
readable? And viceversa?

@ We need explanations;

e Machine / Human Bias (in Datasets, Parameters ...);

Enrico Zanardo SFSCON 4/17



Related work [RQ1]

Distributed Execution Engines & Distributed data-flows

e Existing distributed execution engines (MapReduce and Dryad) were
inefficient for iterative algorithms.

e They often rely on data replication to ensure fault tolerance. In
iterative algorithms, the same data is processed multiple times, leading
to unnecessary replication and storage overhead.

e They were not specifically designed for iterative algorithms and
complex, multi-stage workflows, which are common in many data
processing and machine learning applications.

Input files
kD (RO @RD @RD ..

X X X X X X

RS
] L1
Channels lertices

M M
(processes)
Output files ; {

MapReduce job Dryad job

Enrico Zanardo SFSCON 5/17



Related work [RQ1]

We add and tested iteration capabilities to MapReduce by using
libraries and frameworks such as:

e CGL-MapReduce (Cyclic Graph Library for MapReduce: Introduces
the concept of a cyclic graph to express iterative dependencies)

e Haloop (reduce the overhead of starting new MapReduce jobs for
each iteration)

e Apache Mahout (leverage MapReduce for distributed computation)
They differ from our approach in the following ways:

@ Do not provide transparent fault tolerance.

@ Do not support task dependency graphs.

@ Job latency is increased by consecutive iterations.

Enrico Zanardo SFSCON 6/17



Related work [RQ1]

We tried providing data-dependent control flows:
o Pregel (Google's execution engine)
e Composition of multiple computations not possible.
e Only operates on a single dataset.
@ Piccolo (data-centric programming model)
e Does not provide transparent scaling.

o Fault tolerance involves checkpointing.

Enrico Zanardo SFSCON 7/17



The GDPR's Right to receive an explanations! [RQ2]

General Data Protection Regulations [European Union 2018]

Art.22 - The data subject shall have the right not to be subject to a
decision based solely on automated processing, including profiling, which
produces legal effects concerning him or her or similarly significantly
affects him or her.

Enrico Zanardo SFSCON 8/17



Related work [RQ2]

The Husky-wolf problem
Explain the Prediction

A 83
Predicted: Wolf Predicted: Husky Predi : Husky Predi : Wolf Predicted: Wolf
True: Wolf True: Husky True: Husky True: Wolf True: Wolf

Predicted: Wolf Predicted: Husky Predicted: Wolf Predicted: Wolf Predicted: Husky
True: Wolf True: Wolf True: Wolf True: Husky True: Husky

Enrico Zanardo SFSCON 9/17



Related work [RQ2]

Understand why the black box made that choice?

Predicted: v Predicted: husky Predicted:
True: wolf True: husky True:

Predicted: husky
True: husky

True: husky

Enrico Zanardo SFSCON



Related work [RQ2]

Can we do better?

Yes ..
@ Use IL{P}P that combines logic programming and data mining.

@ Enabling automated and data-driven decision-making in software
optimization.

o ILP leverages data to derive logical rules and dependencies between
tasks within software.

Enrico Zanardo SFSCON 11 /17



Example problem [RQ2]

Our solution, like many others in the field needs to have:
@ An examples file;
@ A background knowledge (BK) file;
@ A bias file;

Enrico Zanardo SFSCON 12 /17



Example problem [RQ2]

N o oA W N e

© 0 N o U A W N e

Example file:

pos (grandparent (ann,amelia)) .

pos (grandparent (steve ,amelia)) .
pos (grandparent (ann, spongebob)) .
pos (grandparent (steve, spongebob)) .
pos (grandparent (linda,amelia)) .
neg(grandparent (amy ,amelia)) .

BK file contains other information about the problem:

mother (ann, amy) .
mother (ann, andy) .
mother (amy , amelia) .
mother (linda,gavin) .
father(steve,amy) .
father (steve,andy) .
father (gavin,amelia).
father (andy, spongebob) .

Enrico Zanardo SFSCON 13/17



Example problem [RQ2]

A bias file contains information necessary to restrict the search space:

1 max_clauses (4).
> max_vars (4) .

3 max_body (3) .
4

The output will be:

1 grandparent (A,B) :-mother (A,C) ,father (C,B).
> grandparent (A,B):-father(A,C) ,mother(C,B).
3 grandparent (A,B):-father(A,C) ,father(C,B).
4 grandparent (A,B) :-mother (A,C) ,mother (C,B).
5

% Precision:1.00, Recall:1.00, TP:5, FN:0, TN:1, FP:0 that is also
Explainable!

Enrico Zanardo SFSCON 14 /17



> Antenna broken. No communication with Earth:
L % Sigh... I'll have to leazn_ttugb :nyself

@ Dynamic control flow

Dynamic task dependencies

Transparent tasks fault tolerance

Transparent network scaling

Logically explain Al models

Enrico Zanardo SFSCON 15 /17



Conclusion

@ This approach enables clients to run “explainable” iterative and
recursive algorithms in a highly parallelized manner with transparent
fault tolerance and transparent scaling

@ At the moment it is designed for coarse-grained (simplified)
parallelism across large data sets

@ For fine-grained parallelism, work-stealing schemes are better:
o If data fits into RAM, Piccolo is more efficient.
o If jobs share a lot of data, OpenMP is more appropriate.

e For better scalability and performance use MPI.

Enrico Zanardo SFSCON 16 /17



Thanks a lot!

SFSCON



	Context and Motivation
	Related work
	Example problem
	Results
	Conclusion

