
Optimizing Software Performance with IL{P}P:
A novel approach

Enrico Zanardo

Researcher @ BEEZ

Enrico Zanardo SFSCON 1 / 17



Overview

1 Context and Motivation

2 Related work

3 Example problem

4 Results

5 Conclusion

Enrico Zanardo SFSCON 2 / 17



Context and Motivation

Optimizing Software Performance & Machine Learning Models

Distributed Systems & Datasets [RQ1];

Parallel computation power [RQ1];

Explainable AI (ILPP) [RQ2];

Enrico Zanardo SFSCON 3 / 17



Context and Motivation

[RQ1]: Is it possible to efficiently train machine learning models in
a decentralized and distribute network without owning the entire
dataset?

Single-node machine learning model training is difficult;

The dataset determines the accuracy of machine learning models;

[RQ2]: Is it possible to turn a machine learning model human
readable? And viceversa?

We need explanations;

Machine / Human Bias (in Datasets, Parameters ...);

Enrico Zanardo SFSCON 4 / 17



Related work [RQ1]
Distributed Execution Engines & Distributed data-flows

Existing distributed execution engines (MapReduce and Dryad) were
inefficient for iterative algorithms.

They often rely on data replication to ensure fault tolerance. In
iterative algorithms, the same data is processed multiple times, leading
to unnecessary replication and storage overhead.

They were not specifically designed for iterative algorithms and
complex, multi-stage workflows, which are common in many data
processing and machine learning applications.

MapReduce job Dryad job
Enrico Zanardo SFSCON 5 / 17



Related work [RQ1]

We add and tested iteration capabilities to MapReduce by using
libraries and frameworks such as:

CGL-MapReduce (Cyclic Graph Library for MapReduce: Introduces
the concept of a cyclic graph to express iterative dependencies)

HaLoop (reduce the overhead of starting new MapReduce jobs for
each iteration)

Apache Mahout (leverage MapReduce for distributed computation)

They differ from our approach in the following ways:

Do not provide transparent fault tolerance.

Do not support task dependency graphs.

Job latency is increased by consecutive iterations.

Enrico Zanardo SFSCON 6 / 17



Related work [RQ1]

We tried providing data-dependent control flows:
Pregel (Google’s execution engine)

Composition of multiple computations not possible.

Only operates on a single dataset.

Piccolo (data-centric programming model)
Does not provide transparent scaling.

Fault tolerance involves checkpointing.

Enrico Zanardo SFSCON 7 / 17



The GDPR’s Right to receive an explanations! [RQ2]

General Data Protection Regulations [European Union 2018]

Art.22 - The data subject shall have the right not to be subject to a
decision based solely on automated processing, including profiling, which

produces legal effects concerning him or her or similarly significantly
affects him or her.

Enrico Zanardo SFSCON 8 / 17



Related work [RQ2]

The Husky-wolf problem

Enrico Zanardo SFSCON 9 / 17



Related work [RQ2]
Understand why the black box made that choice?

Enrico Zanardo SFSCON 10 / 17



Related work [RQ2]

Can we do better?

Yes ..

Use IL{P}P that combines logic programming and data mining.

Enabling automated and data-driven decision-making in software
optimization.

ILP leverages data to derive logical rules and dependencies between
tasks within software.

Enrico Zanardo SFSCON 11 / 17



Example problem [RQ2]

Our solution, like many others in the field needs to have:

An examples file;

A background knowledge (BK) file;

A bias file;

Enrico Zanardo SFSCON 12 / 17



Example problem [RQ2]
Example file:

1 pos(grandparent(ann,amelia)).
2 pos(grandparent(steve ,amelia)).
3 pos(grandparent(ann,spongebob)).
4 pos(grandparent(steve ,spongebob)).
5 pos(grandparent(linda ,amelia)).
6 neg(grandparent(amy,amelia)).
7

BK file contains other information about the problem:
1 mother(ann,amy).
2 mother(ann,andy).
3 mother(amy,amelia).
4 mother(linda ,gavin).
5 father(steve ,amy).
6 father(steve ,andy).
7 father(gavin ,amelia).
8 father(andy,spongebob).
9

Enrico Zanardo SFSCON 13 / 17



Example problem [RQ2]

A bias file contains information necessary to restrict the search space:
1 max_clauses(4).
2 max_vars(4).
3 max_body(3).
4

The output will be:
1 grandparent(A,B):-mother(A,C),father(C,B).
2 grandparent(A,B):-father(A,C),mother(C,B).
3 grandparent(A,B):-father(A,C),father(C,B).
4 grandparent(A,B):-mother(A,C),mother(C,B).
5

% Precision:1.00, Recall:1.00, TP:5, FN:0, TN:1, FP:0 that is also
Explainable!

Enrico Zanardo SFSCON 14 / 17



Results

Dynamic control flow

Dynamic task dependencies

Transparent tasks fault tolerance

Transparent network scaling

Logically explain AI models
Enrico Zanardo SFSCON 15 / 17



Conclusion

This approach enables clients to run ”explainable” iterative and
recursive algorithms in a highly parallelized manner with transparent
fault tolerance and transparent scaling

At the moment it is designed for coarse-grained (simplified)
parallelism across large data sets
For fine-grained parallelism, work-stealing schemes are better:

If data fits into RAM, Piccolo is more efficient.

If jobs share a lot of data, OpenMP is more appropriate.

For better scalability and performance use MPI.

Enrico Zanardo SFSCON 16 / 17



Thanks a lot!

Enrico Zanardo SFSCON 17 / 17


	Context and Motivation
	Related work
	Example problem
	Results
	Conclusion

