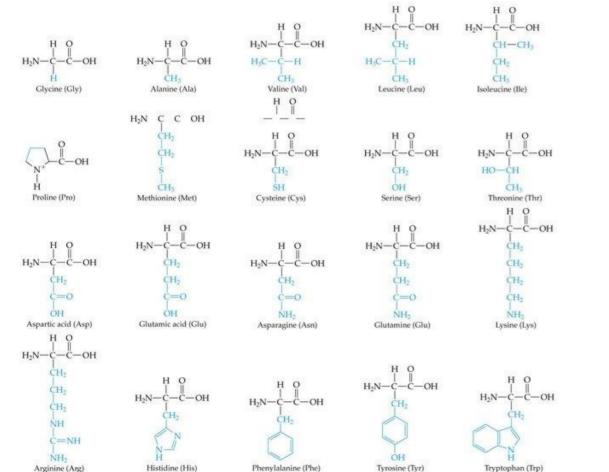


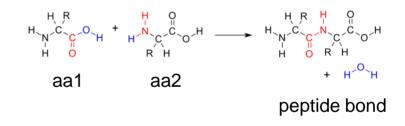
Machine learning-driven simulation of protein folding atomistic trajectories

<u>Alan laneselli</u> SFSCON 2023

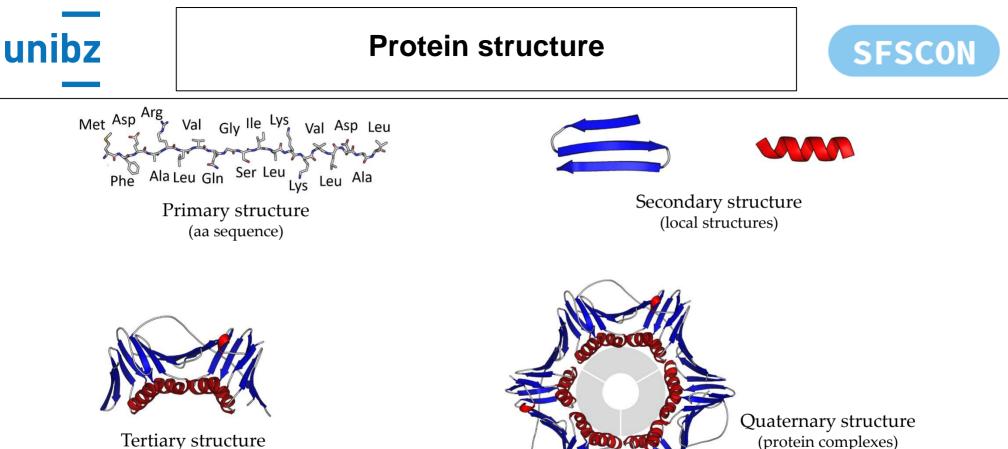
Protein structure



~20 amino acids



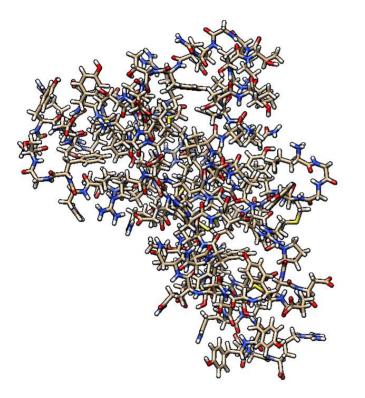
A protein is a polymer of tens, hundreds or thousands of amino acids

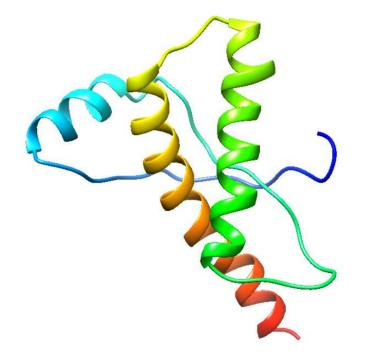


(3D conformation)

 $\rightarrow \underline{\text{Unique conformation}} \text{ given a specific aminoacidic sequence}$ = the **protein folding problem**

Protein structure

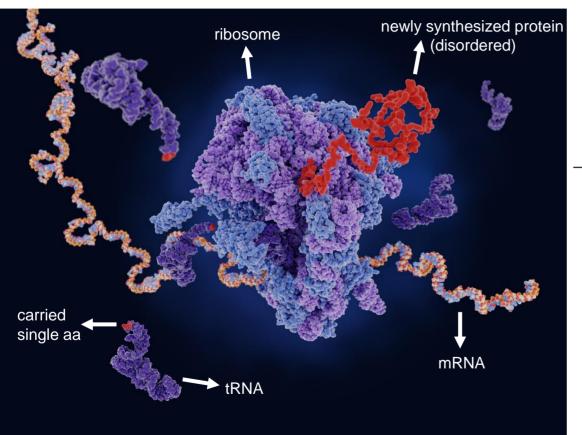




All-atom representation

Ribbon representation

Protein synthesis



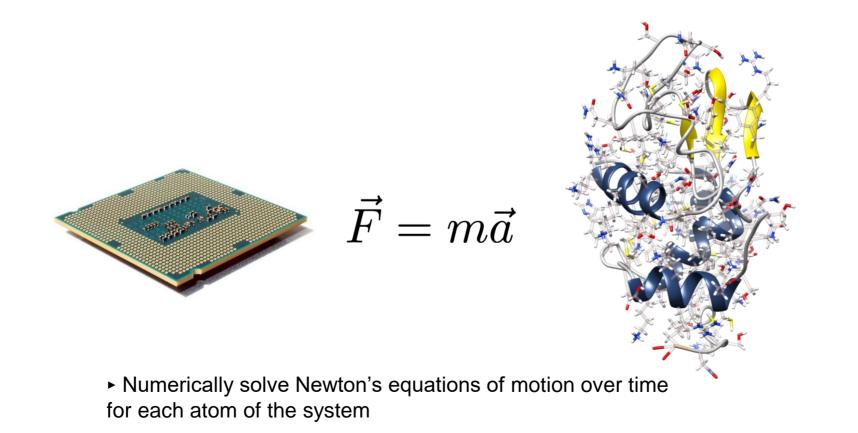
 \rightarrow How does the newly synthesized disordered protein achieve its <u>final conformation</u>?

SFSCON

Author: Juan Gaertner

Molecular dynamics (MD) simulations

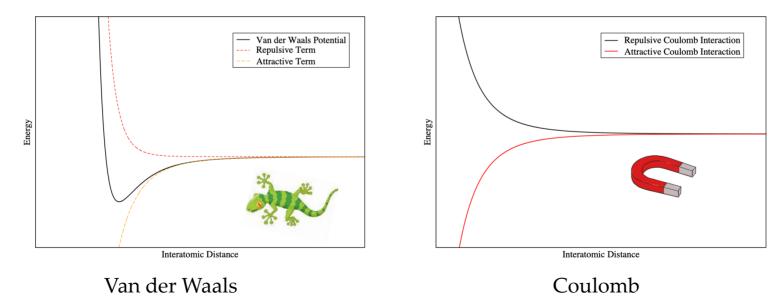
unibz



Molecular dynamics (MD) simulations

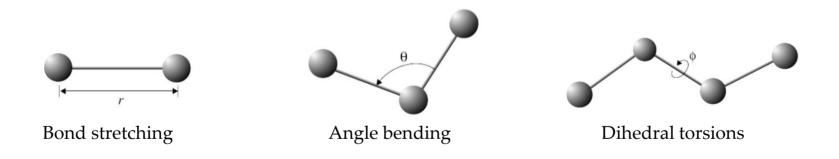
Forces are computed from force fields

Non-bonded interactions



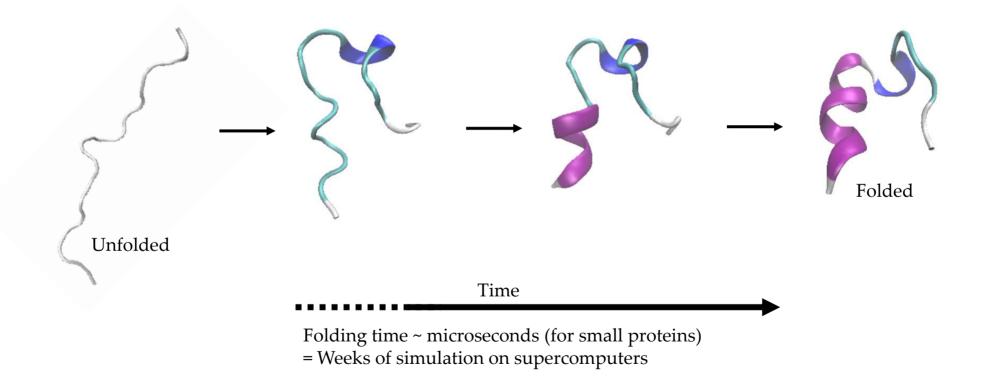
Forces are computed from *force fields*

Bonded interactions

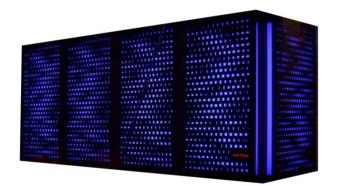


Molecular dynamics (MD) simulations

SFSCON



Anton Supercomputer ~50 µs/day for ~100'000 atoms



DE Shaw et al., 2009

Anton Supercomputer ~50 µs/day for ~100'000 atoms

|--|--|--|--|

DE Shaw et al., 2009

For example, Lysozyme in water (~100'000 atoms) requires SECONDS to fold

~100 years of simulation!!

Anton Supercomputer ~50 µs/day for ~100'000 atoms

|--|--|--|

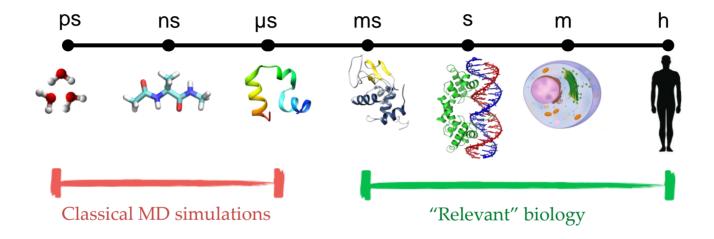
DE Shaw et al., 2009

For example, Lysozyme in water (~100'000 atoms) requires SECONDS to fold

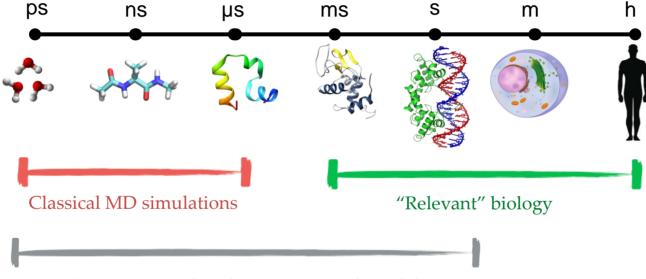
~100 years of simulation!!

Conventional MD approaches are unfeasible

Timescales of macromolecules

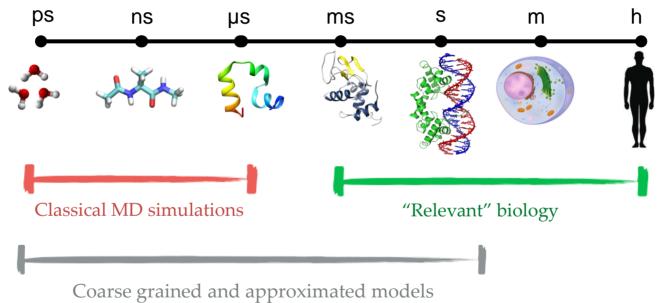


Timescales of macromolecules



Coarse grained and approximated models

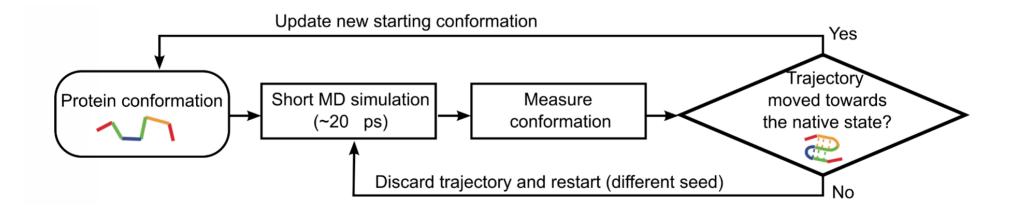
Timescales of macromolecules



→ Sometimes unrealistic or unfalsifiable

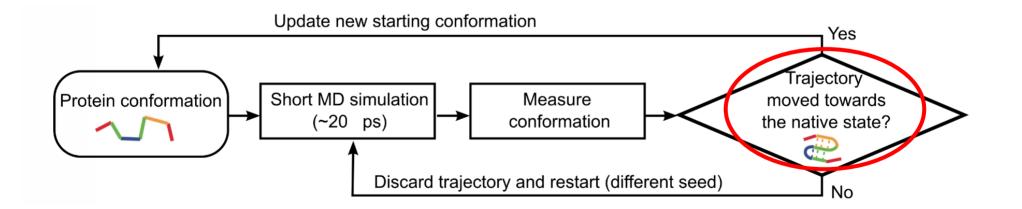
SFSCON

A smart **algorithm** to study protein folding trajectories



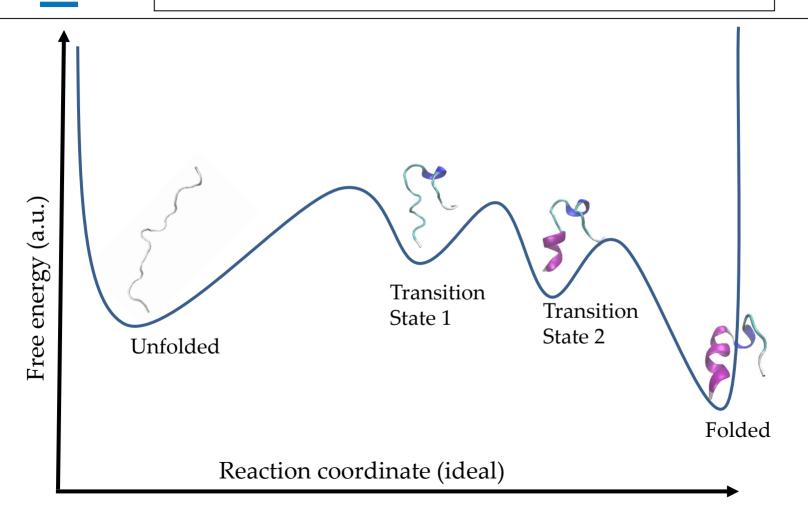
SFSCON

A smart **algorithm** to study protein folding trajectories

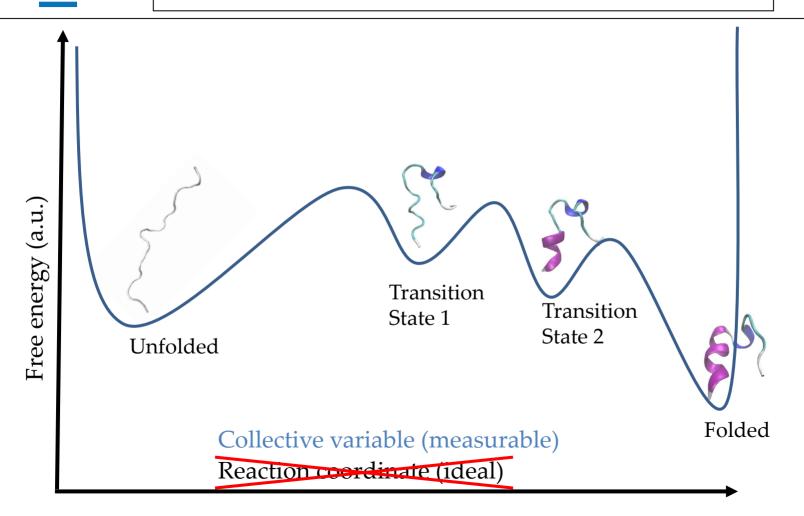


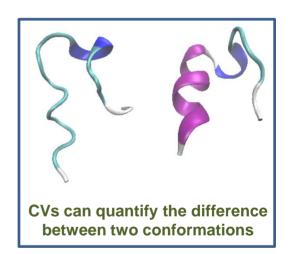
How do you measure if it went "forward"?

Reaction Coordinate and Collective Variables



Reaction Coordinate and Collective Variables

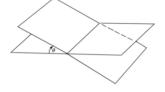


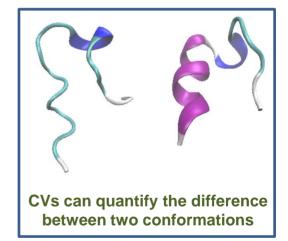


SFSCON

1. Dihedral angles deviation from the native state

Syzonenko *et al*, J. Chem. Inf. Model. 2020

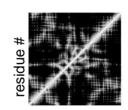




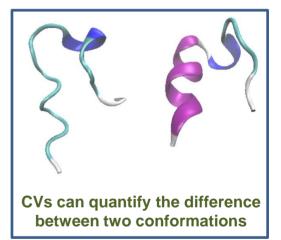
1. Dihedral angles deviation from the native state Syzonenko et al,

J. Chem. Inf. Model. 2020

2. Inter-aa contact deviation from the native state Beccara *et al*, Phys. Rev. Lett. 2015



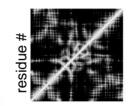
residue #



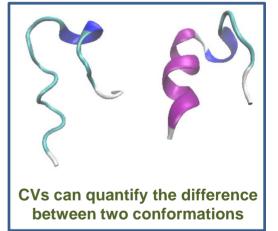
1. Dihedral angles deviation from the native state Syzonenko *et al*,

J. Chem. Inf. Model. 2020

- 2. Inter-aa contact deviation from the native state Beccara *et al*, Phys. Rev. Lett. 2015
- 3. Geometrical difference from the native state



residue #

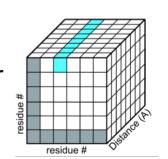


1. Dihedral angles deviation from the native state Syzonenko *et al*,

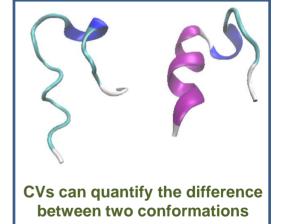
J. Chem. Inf. Model. 2020

- 2. Inter-aa contact deviation from the native state Beccara *et al*, Phys. Rev. Lett. 2015
- 3. Geometrical difference from the native state

4. Deviation from Google's Deepmind AlphaFold tensor



residue #



4. Deviation from Google's Deepmind AlphaFold tensor

Google's Deepmind Alphafold:

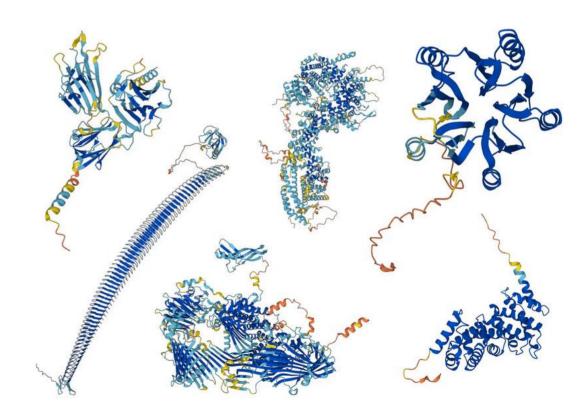
Latest AI milestone in the protein folding field

Training set: 170k protein structures

Able to predict more than **200 million** of structures

Unprecedented accuracy

 \rightarrow able to predict the final conformation of any aminoacidic sequence



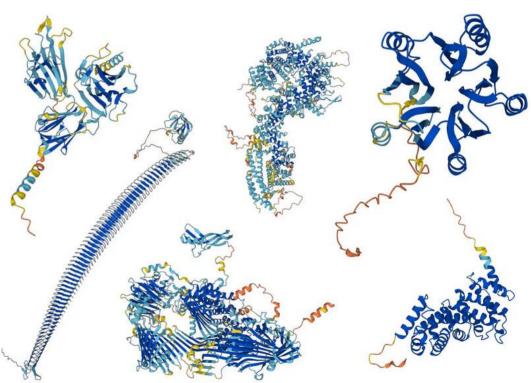
4. Deviation from Google's Deepmind AlphaFold tensor

Google's Deepmind Alphafold:

-**Input** = aa sequence (text string)

-Sequence alignment (database comparison) -Prediction of distance and angle between aa pairs

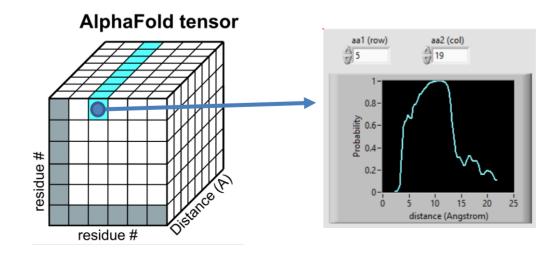
-**Output** = 3D protein structure



4. Deviation from Google's Deepmind AlphaFold tensor

One of the outputs of AlphaFold is the so-called **distogram**: **Tensor** of <u>distance bins x aa x aa</u>

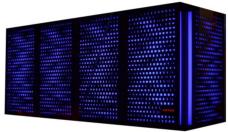
→ probability over distance between pairs of aa example below: aa at position 5 (Asparagine) vs aa at position 19 (Aspartic acid)



- → machine-learned 170k protein conformations
 - → corresponds to a quasichemical potential

Training set:

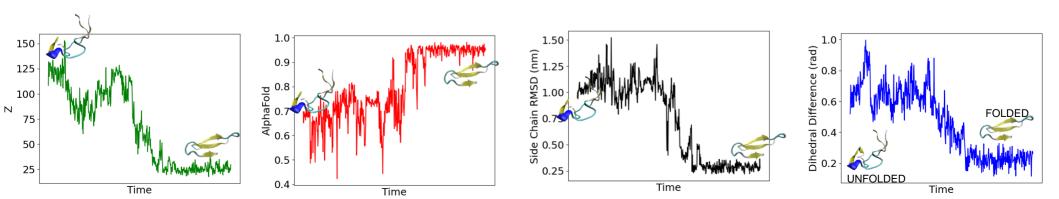
Very long folding trajectories obtained by the most powerful supercomputer (Anton) \rightarrow 200µs of trajectories (Villin and Fip35 proteins)



Anton

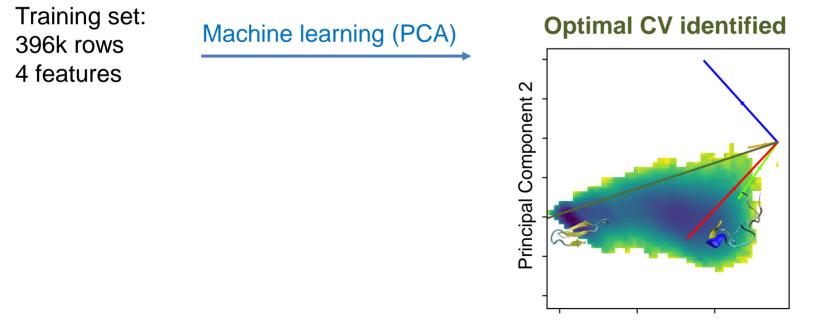
Training set:

Very long folding trajectories obtained by the most powerful supercomputer (Anton) \rightarrow 200µs of trajectories (Villin and Fip35 proteins)



Training set:

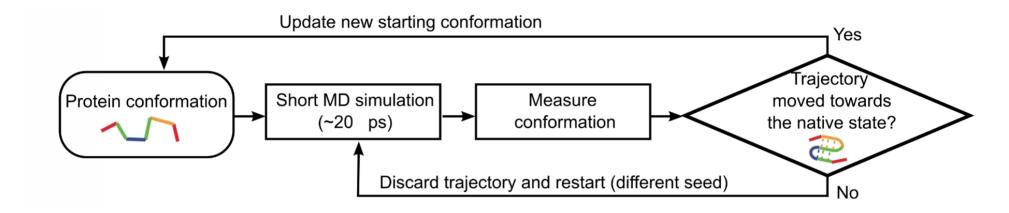
Very long folding trajectories obtained by the most powerful supercomputer (Anton) \rightarrow 200µs of trajectories (Villin and Fip35 proteins)



Principal Component 1

Run MD folding algorithm

SFSCON



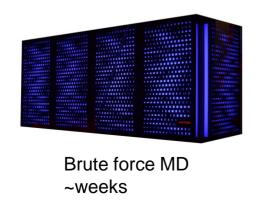
Towards the native state = along the optimal CV

NOTE: trajectories are unbiased

SFSCON

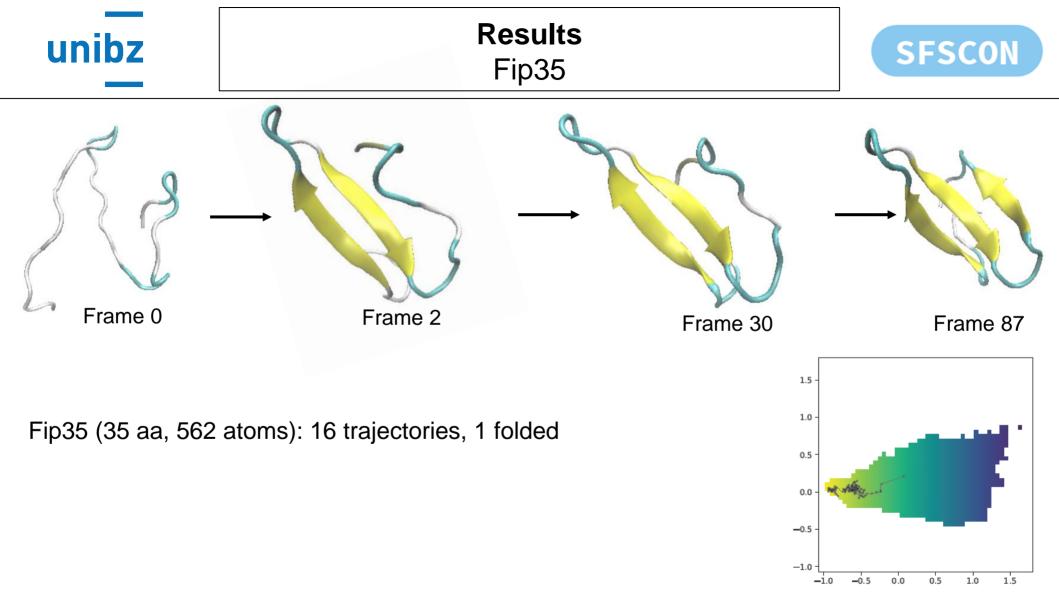
Obtained the folding trajectories of 4 small proteins

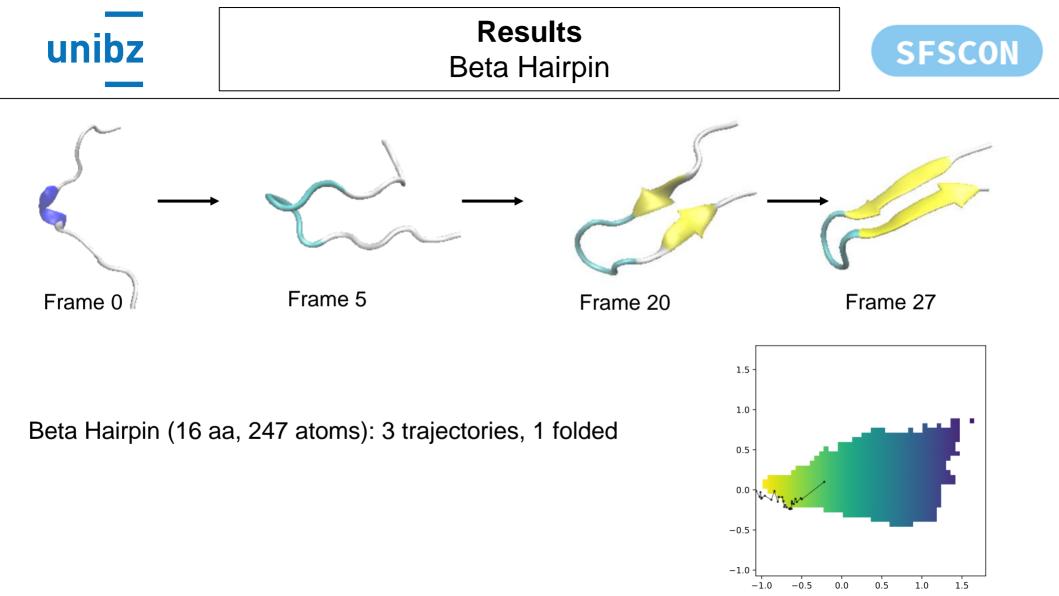
My simulation time = 1 day per trajectory on a weak laptop (Anton supercomputer would need weeks)

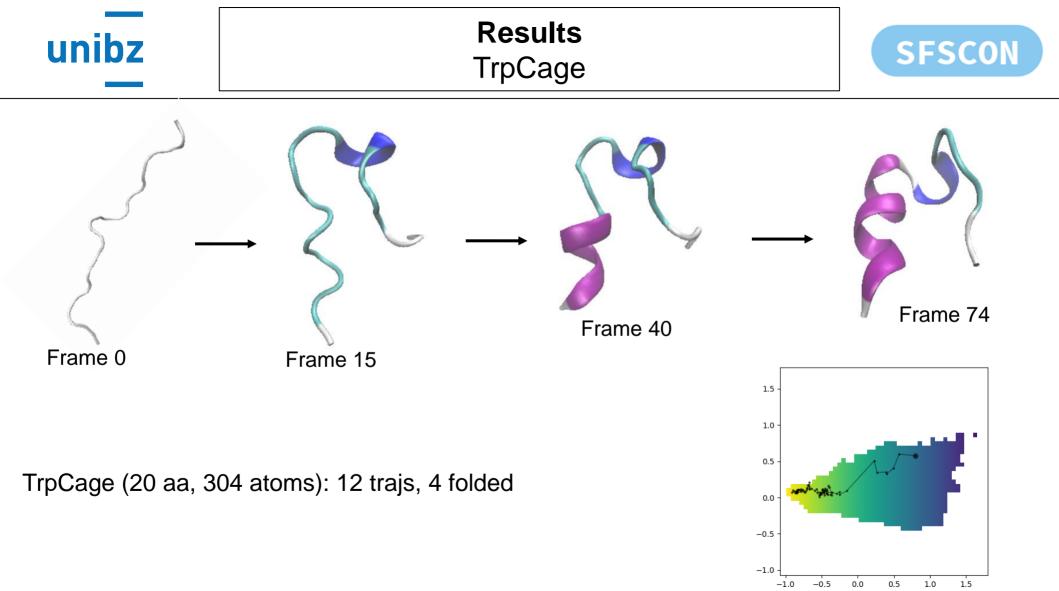


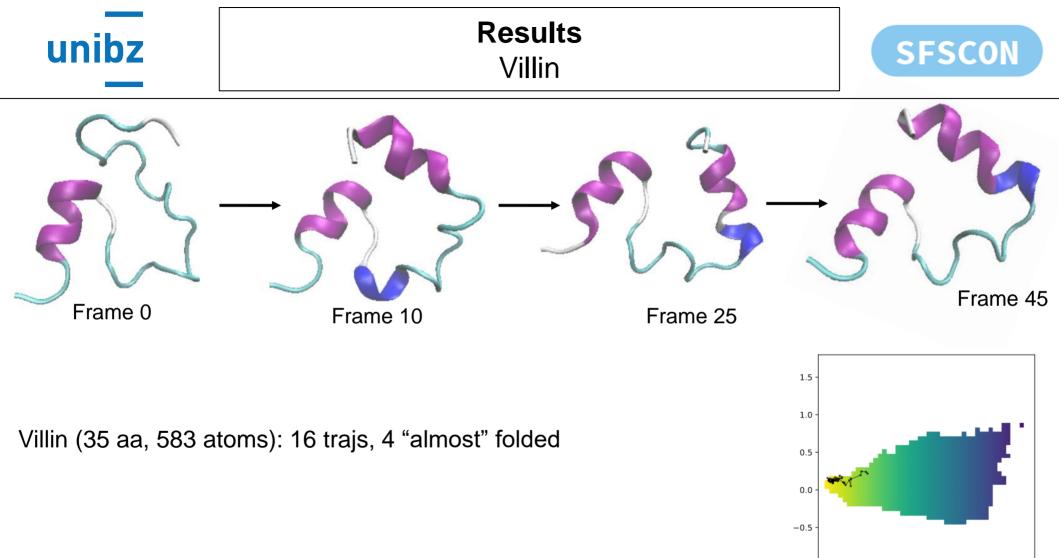
VS

Smart algorithm ~hours









-1.0

-1.0

-0.5

0.0

0.5

1.5

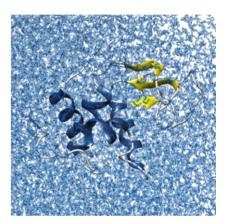
1.0

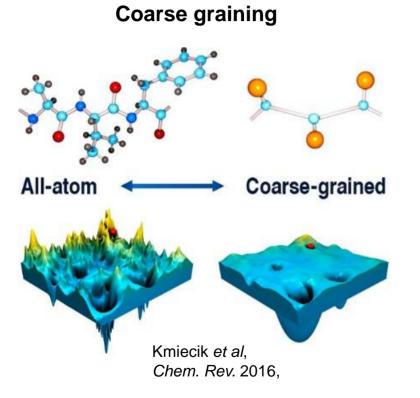


-1.0 -0.5 0.0 0.5 1.0 1.5

Future works

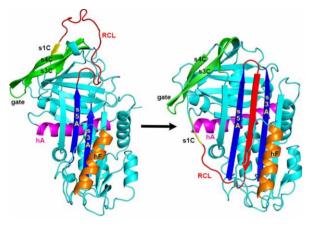
Explicit solvent



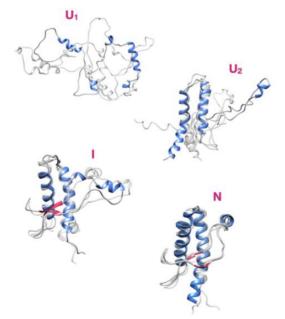


Method applications

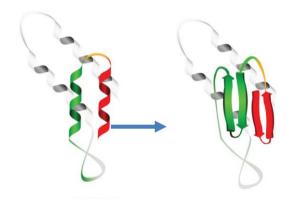
Conformational transitions and point mutations



Identify intermediate conformations



Misfolding



Thanks for the attention!

Prof. Diego Calvanese Smart Data Factory University of Bolzano

Prof. Emiliano Biasini Collaborator University of Trento

Prof. Pietro Faccioli Master's supervisor University of Milan

